cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159797 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n-1.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 3, 5, 7, 9, 4, 7, 10, 13, 16, 5, 9, 13, 17, 21, 25, 6, 11, 16, 21, 26, 31, 36, 7, 13, 19, 25, 31, 37, 43, 49, 8, 15, 22, 29, 36, 43, 50, 57, 64, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101
Offset: 0

Views

Author

Omar E. Pol, Jul 09 2009

Keywords

Comments

Note that the last term of the n-th row is the n-th square A000290(n).
See also A162611, A162614 and A162622.
The triangle sums, see A180662 for their definitions, link the triangle A159797 with eleven sequences, see the crossrefs. - Johannes W. Meijer, May 20 2011
T(n,k) is the number of distinct sums in the direct sum of {1, 2, ... n} with itself k times for 1 <= k <= n+1, e.g., T(5,3) = the number of distinct sums in the direct sum {1,2,3,4,5} + {1,2,3,4,5} + {1,2,3,4,5}. The sums range from 1+1+1=3 to 5+5+5=15. So there are 13 distinct sums. - Derek Orr, Nov 26 2014

Examples

			Triangle begins:
0;
1, 1;
2, 3, 4;
3, 5, 7, 9;
4, 7,10,13,16;
5, 9,13,17,21,25;
6,11,16,21,26,31,36;
		

Crossrefs

Cf.: A006002 (row sums). - R. J. Mathar, Jul 17 2009
Cf. A163282, A163283, A163284, A163285. - Omar E. Pol, Nov 18 2009
From Johannes W. Meijer, May 20 2011: (Start)
Triangle sums (see the comments): A006002 (Row1), A050187 (Row2), A058187 (Related to Kn11, Kn12, Kn13, Fi1 and Ze1), A006918 (Related to Kn21, Kn22, Kn23, Fi2 and Ze2), A000330 (Kn3), A016061 (Kn4), A190717 (Related to Ca1 and Ze3), A144677 (Related to Ca2 and Ze4), A000292 (Related to Ca3, Ca4, Gi3 and Gi4) A190718 (Related to Gi1) and A144678 (Related to Gi2). (End)

Programs

Formula

Given m = floor( (sqrt(8*n+1)-1)/2 ), then a(n) = m + (n - m*(m+1)/2)*(m-1). - Carl R. White, Jul 24 2010

Extensions

Edited by Omar E. Pol, Jul 18 2009
More terms from Omar E. Pol, Nov 18 2009
More terms from Carl R. White, Jul 24 2010