cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A030202 Expansion of q^(-1/4) * eta(q) * eta(q^5) in powers of q.

Original entry on oeis.org

1, -1, -1, 0, 0, 0, 1, 2, 0, 0, -2, 1, -1, 0, 0, -2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, -2, 0, 0, 1, -1, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -1, 2, 0, 0, -2, 1, 0, 0, 0, -2, 0, -2, 0, 0, -2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, -2, 0, 0, 2, -1, -2, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Number 62 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - x^2 + x^6 + 2*x^7 - 2*x^10 + x^11 - x^12 - 2*x^15 + x^20 + ...
G.f. = q - q^5 - q^9 + q^25 + 2*q^29 - 2*q^41 + q^45 - q^49 - 2*q^61 + q^81 + ...
		

References

  • Bruce Berndt, Ramanujan's Notebooks Part III, Springer-Verlag; see page 44.

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma1(80), 1), 413)[1]; /* Michael Somos, May 16 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^5], {x, 0, n}] (* Michael Somos, Aug 08 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 1, Pi/5, q^2] EllipticTheta[ 1, 2 Pi/5, q^2] / Sqrt[5], {q, 0, 4 n + 1}] // FullSimplify; (* Michael Somos, Aug 08 2011 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x^5 + x * O(x^n)) * eta(x + x * O(x^n)), n))}; /* Michael Somos, Sep 04 2007 */
    
  • PARI
    {a(n) = my(A, p, e, x, y); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p==5, (-1)^e, p%20>10, !(e%2), p%4==3, kronecker( -4, e+1), for( y=1, sqrtint(p\5), if( issquare(p - 5*y^2), x=y; break)); (-1)^(e*x) * (e+1))))}; /* Michael Somos, Sep 04 2007 */
    

Formula

Expansion of f(-x, -x^4) * f(-x^2, -x^3) in powers of x where f() is the Ramanujan two-variable theta function.
Expansion of q^(-1) * (phi(q) * phi(q^20) - phi(q^4) * phi(q^5)) / 2 in powers of q^4 where phi() is a Ramanujan theta function.
Euler transform of period 5 sequence [ -1, -1, -1, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 80^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(5^e) = (-1)^e, b(p^e) = (1+(-1)^e)/2 if p == 11, 13, 17, 19 (mod 20), b(p^e) = (i^n +(-i)^n)/2 if p == 3, 7 (mod 20), b(p^e) = (-1)^(e*y) * (e+1) if p == 1, 9 (mod 20) where p = x^2 + 5*y^2. - Michael Somos, Sep 04 2007
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(5*k)).
a(5*n + 3) = a(5*n + 4) = a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = -a(n). - Michael Somos, May 16 2015
Convolution square is A030205. - Michael Somos, May 16 2015
a(n) = (-1)^n * A159818(n). - Michael Somos, May 16 2015

A159817 Coefficients of L-series for elliptic curve "80b2": y^2 = x^3 - x^2 - x.

Original entry on oeis.org

1, 2, -1, -2, 1, 0, 2, -2, -6, 4, -4, -6, 1, -4, 6, 4, 0, 2, 2, 4, 6, 10, -1, 6, -3, -12, -6, 0, 8, -12, 2, -2, -2, -2, -12, 12, 2, 2, 0, -8, -11, -6, 6, 12, -6, -4, 8, -4, 2, 0, 6, -14, 4, 6, 2, 4, -6, 6, 2, 12, -11, 12, -1, -2, 20, 0, -8, 4, 18, 4, 12, 0, -6, -6, -6, -20, -6, -4, -22, -12, 12, 10, 0, -18, -9, 4, -6, -2, -24
Offset: 0

Views

Author

Michael Somos, Apr 22 2009

Keywords

Comments

Number 61 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x - x^2 - 2*x^3 + x^4 + 2*x^6 - 2*x^7 - 6*x^8 + 4*x^9 - 4*x^10 + ...
G.f. = q + 2*q^3 - q^5 - 2*q^7 + q^9 + 2*q^13 - 2*q^15 - 6*q^17 + 4*q^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x] QPochhammer[ -x^5])^2, {x, 0, n}]; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = if( n<0, 0, ellak( ellinit([0, -1, 0, -1, 0], 1), 2*n + 1))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 * eta(x^10 + A)^3 / (eta(x + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^20 + A)))^2, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==5, (-1)^e, a0=1; a1 = y = -sum(x=0, p-1, kronecker(x^3 - x^2 - x, p)); for(i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))};

Formula

Expansion of (f(x) * f(x^5))^2 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-1/2) * (eta(q^2)^3 * eta(q^10)^3 / (eta(q) * eta(q^4) * eta(q^5) * eta(q^20)))^2 in powers of q.
Euler transform of period 20 sequence [ 2, -4, 2, -2, 4, -4, 2, -2, 2, -8, 2, -2, 2, -4, 4, -2, 2, -4, 2, -4, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(5^e) = (-1)^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 80 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: (Product_{k>0} (1 - (-x)^k) * (1 - (-x)^(5*k)))^2.
a(n) = (-1)^n * A030205(n). Convolution square of A159818.
Showing 1-2 of 2 results.