cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159835 Engel expansion of hz = limit_{k -> infinity} 1 + k - Sum_{j = -k..k} exp(-2^j).

Original entry on oeis.org

1, 4, 4, 4, 4, 6, 11, 11, 11, 14, 61, 266, 1006, 1030, 1261, 6264, 7583, 7979, 7986, 12386, 80041, 87434, 130927, 270073, 1653819, 1715177, 1973657, 3483485, 12346987, 17531499, 21237674, 84103203, 195088616, 725688944, 2813572082, 3138084145, 10870485195
Offset: 1

Views

Author

Alois P. Heinz, Apr 23 2009

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

Examples

			hz = 1.3327473824328992250086010983738997044167439822598445365797 ...
		

References

  • F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A158468 (decimal expansion), A158469 (continued fraction).

Programs

  • Maple
    hz:= limit(1+k -sum(exp(-2^j), j=-k..k), k=infinity):
    engel:= (r,n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
    Digits:=300:
    engel(evalf(hz), 39);

Extensions

Some terms corrected by Alois P. Heinz, Nov 22 2020