A159841 Triangle T(n,k) = binomial(3*n+1, 2*n+k+1), read by rows.
1, 4, 1, 21, 7, 1, 120, 45, 10, 1, 715, 286, 78, 13, 1, 4368, 1820, 560, 120, 16, 1, 27132, 11628, 3876, 969, 171, 19, 1, 170544, 74613, 26334, 7315, 1540, 231, 22, 1, 1081575, 480700, 177100, 53130, 12650, 2300, 300, 25, 1, 6906900, 3108105, 1184040, 376740
Offset: 0
Examples
Triangle begins: 1; 4, 1; 21, 7, 1; 120, 45, 10, 1; 715, 286, 78, 13, 1; 4368, 1820, 560, 120, 16, 1; ...
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- E. H. M. Brietzke, An identity of Andrews and a new method for the Riordan array proof of combinatorial identities, Discrete Math., 308 (2008), 4246-4262.
Programs
-
Magma
/* As triangle */ [[Binomial(3*n+1, 2*n+k+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 19 2018
-
Mathematica
f[n_,k_]:=Binomial[3n+1,2n+k+1]; Table[ f[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Robert G. Wilson v, May 31 2009 *)
-
PARI
for(n=0,10, for(k=0,n, print1(binomial(3*n+1, 2*n+k+1), ", "))) \\ G. C. Greubel, May 19 2018
Formula
T(n,0) = 4*T(n-1,0) + 5*T(n-1,1) + T(n-1,2), T(n+1,k+1) = T(n,k) + 3*T(n,k+1) + 3*T(n,k+2) + T(n,k+3) for k >= 0.
Extensions
More terms from Robert G. Wilson v, May 31 2009
Comments