cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159841 Triangle T(n,k) = binomial(3*n+1, 2*n+k+1), read by rows.

Original entry on oeis.org

1, 4, 1, 21, 7, 1, 120, 45, 10, 1, 715, 286, 78, 13, 1, 4368, 1820, 560, 120, 16, 1, 27132, 11628, 3876, 969, 171, 19, 1, 170544, 74613, 26334, 7315, 1540, 231, 22, 1, 1081575, 480700, 177100, 53130, 12650, 2300, 300, 25, 1, 6906900, 3108105, 1184040, 376740
Offset: 0

Views

Author

Philippe Deléham, Apr 23 2009

Keywords

Comments

T(n,0) = A045721(n), T(2n,n) = A079590(n).

Examples

			Triangle begins:
     1;
     4,    1;
    21,    7,    1;
   120,   45,   10,    1;
   715,  286,   78,   13,    1;
  4368, 1820,  560,  120,   16,    1;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Binomial(3*n+1, 2*n+k+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 19 2018
  • Mathematica
    f[n_,k_]:=Binomial[3n+1,2n+k+1]; Table[ f[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Robert G. Wilson v, May 31 2009 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(3*n+1, 2*n+k+1), ", "))) \\ G. C. Greubel, May 19 2018
    

Formula

T(n,0) = 4*T(n-1,0) + 5*T(n-1,1) + T(n-1,2), T(n+1,k+1) = T(n,k) + 3*T(n,k+1) + 3*T(n,k+2) + T(n,k+3) for k >= 0.

Extensions

More terms from Robert G. Wilson v, May 31 2009