A159882 Numerator of Hermite(n, 13/23).
1, 26, -382, -64948, -476180, 262479256, 9343452856, -1423288542832, -106203113965168, 9285433263435680, 1252687316025657376, -65670013710482402624, -16286195340379143010112, 410305415218426865451392, 234668271507253831462816640, 23931248973260886967214336
Offset: 0
Examples
Numerators of 1, 26/23, -382/529, -64948/12167, -476180/279841, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..385
Crossrefs
Cf. A009967 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(26/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018
-
Mathematica
Numerator[Table[HermiteH[n, 13/23], {n, 0, 30}]] (* or *) Table[23^n* HermiteH[n, 13/23], {n,0,30}] (* G. C. Greubel, Jul 16 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 13/23)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(26*x - 529*x^2))) \\ G. C. Greubel, Jul 16 2018
Formula
From G. C. Greubel, Jul 16 2018: (Start)
a(n) = 23^n * Hermite(n, 13/23).
E.g.f.: exp(26*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(26/23)^(n-2*k)/(k!*(n-2*k)!)). (End)