A159912 Partial sums of A159913(k) = 2^bitcount(2k+1)-1 = A038573(2k+1), bitcount=A000120.
0, 1, 4, 7, 14, 17, 24, 31, 46, 49, 56, 63, 78, 85, 100, 115, 146, 149, 156, 163, 178, 185, 200, 215, 246, 253, 268, 283, 314, 329, 360, 391, 454, 457, 464, 471, 486, 493, 508, 523, 554, 561, 576, 591, 622, 637, 668, 699, 762, 769, 784, 799, 830, 845, 876, 907
Offset: 0
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- David Applegate, The movie version
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 6, 30.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
- Index entries for sequences related to toothpick sequences
Programs
-
Mathematica
Accumulate@ Table[2^(DigitCount[n, 2][[1]] + 1) - 1, {n, 0, 54}] (* Michael De Vlieger, Jan 25 2016 *)
-
PARI
A159912(n)=sum(i=0,n-1,1<
Comments