A159921 Numerator of Hermite(n, 18/23).
1, 36, 238, -67608, -3189300, 171302256, 23038278216, -258048705312, -179911241858928, -4292680465160640, 1558578348234929376, 101525379857857028736, -14483821141875255043392, -1810383783782862018394368, 134036659769169225204616320, 31640724357081844323823566336
Offset: 0
Examples
Numerators of 1, 36/23, 238/529, -67608/12167, -3189300/279841, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..385
Crossrefs
Cf. A009967 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(36/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018
-
Mathematica
Numerator[Table[HermiteH[n, 18/23], {n, 0, 30}]] (* or *) Table[23^n* HermiteH[n, 18/23], {n,0,30}] (* G. C. Greubel, Jul 16 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 18/23)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(36*x - 529*x^2))) \\ G. C. Greubel, Jul 16 2018
Formula
From G. C. Greubel, Jul 16 2018: (Start)
a(n) = 23^n * Hermite(n, 18/23).
E.g.f.: exp(36*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(36/23)^(n-2*k)/(k!*(n-2*k)!)). (End)