cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159925 Row sums of triangle A159924.

Original entry on oeis.org

1, 3, 12, 61, 370, 2606, 20925, 188772, 1890773, 20822481, 250082522, 3253176309, 45567394330, 683783923476, 10944068960451, 186098265906832, 3350501663825617, 63671208559149815, 1273621946395366224
Offset: 1

Views

Author

Leroy Quet, Apr 26 2009

Keywords

Comments

The sum of all terms in rows 1 through m of triangle A159924 is A159926(m). A159926(m) - A159926(m-1) = A159925(m), for m >= 2.

Crossrefs

Programs

  • Maple
    A159924 := proc(n,m) option remember ; local s; if n = m then 1; else s := add(add(procname(r,c),c=1..r),r=1..n-1) ; procname(n-1,m)+s ; fi; end: A159925 := proc(n) local m; add( A159924(n,m),m=1..n) ; end: seq(A159925(n),n=1..40) ; # R. J. Mathar, Apr 29 2009
  • Mathematica
    Total /@ Block[{m = 0}, NestList[Block[{w = #}, AddTo[m, Total@ w]; Append[m + w, 1]] &, {1}, 18]] (* Michael De Vlieger, Oct 30 2017 *)

Extensions

More terms from R. J. Mathar, Apr 29 2009

A159926 The sum of all terms in row 1 through m of triangle A159924.

Original entry on oeis.org

1, 4, 16, 77, 447, 3053, 23978, 212750, 2103523, 22926004, 273008526, 3526184835, 49093579165, 732877502641, 11676946463092, 197775212369924, 3548276876195541, 67219485435345356, 1340841431830711580
Offset: 1

Views

Author

Leroy Quet, Apr 26 2009

Keywords

Comments

A159925 contains the row-sums of triangle A159924.

Crossrefs

Programs

  • Maple
    A159924 := proc(n,m) option remember ; local s; if n = m then 1; else s := add(add(procname(r,c),c=1..r),r=1..n-1) ; procname(n-1,m)+s ; fi; end: A159925 := proc(n) local m; add( A159924(n,m),m=1..n) ; end: A159926 := proc(n) add( A159925(k),k=1..n) ; end: seq(A159926(n),n=1..40) ; # R. J. Mathar, Apr 29 2009
  • Mathematica
    Accumulate@ Map[Total, Block[{m = 0}, NestList[Block[{w = #}, AddTo[m, Total@ w]; Append[m + w, 1]] &, {1}, 18]]] (* Michael De Vlieger, Oct 30 2017 *)

Formula

a(m) - a(m-1) = A159925(m), for m >= 2.

Extensions

More terms from R. J. Mathar, Apr 29 2009

A159927 Triangle read by rows: a(1,1) = 1. a(m,m) = sum of all terms in rows 1 through m-1. a(m,n) = a(m-1,n) + (sum of all terms in rows 1 through m-1), for n < m.

Original entry on oeis.org

1, 2, 1, 6, 5, 4, 25, 24, 23, 19, 135, 134, 133, 129, 110, 886, 885, 884, 880, 861, 751, 6784, 6783, 6782, 6778, 6759, 6649, 5898, 59115, 59114, 59113, 59109, 59090, 58980, 58229, 52331, 576527, 576526, 576525, 576521, 576502, 576392, 575641, 569743
Offset: 1

Views

Author

Leroy Quet, Apr 26 2009

Keywords

Comments

A159928(m) = -A075374(m+4)+A075374(m+3), for m >= 1. -A075374(m+4) = the sum of all terms of triangle A159927 in rows 1 through m. A159928 contains the row-sums of triangle A159927.

Examples

			The triangle starts like this:
   1;
   2,  1;
   6,  5,  4;
  25, 24, 23, 19;
The sum of all of these terms is 110. Adding 110 to each term of the 4th row, we get: 25+110=135, 24+110=134, 23+110=133, 19+110=129, 0+110=110. So row 5 is 135,134,133,129,110.
		

Crossrefs

Programs

  • Maple
    A159927 := proc(n,m) option remember; local rs; if n = 1 then 1; else rs := add(add( procname(i,j),j=1..i),i=1..n-1) ; if n = m then rs; else procname(n-1,m)+rs; fi; fi; end: for n from 1 to 10 do for m from 1 to n do printf("%d,",A159927(n,m)) ; od: od: # R. J. Mathar, Apr 28 2009
  • Mathematica
    NestList[{#1 + #2, #2} & @@ {Join[#1, {0}], Total[#1] + #2} & @@ # &, {{1}, 0}, 8][[All, 1]] // Flatten (* Michael De Vlieger, Aug 30 2017 *)

Extensions

More terms from R. J. Mathar, Apr 28 2009
Showing 1-3 of 3 results.