cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A159928 a(n) is the sum of the terms of row n of triangle A159927.

Original entry on oeis.org

1, 3, 15, 91, 641, 5147, 46433, 465081, 5121789, 61513799, 800196799, 11208394387, 168193068805, 2691956450679, 45775335405729, 824136306116113, 15661462041469817, 313277888390065739, 6579708440058166031
Offset: 1

Views

Author

Leroy Quet, Apr 26 2009

Keywords

Comments

a(n) = -A075374(n+4) + A075374(n+3), for n >= 1; -A075374(n+4) = the sum of all terms of triangle A159927 in rows 1 through n.

Crossrefs

Programs

  • Magma
    S:=[1]; T:=S; s:=1; for m in [2..19] do T:=[ n lt m select T[n]+s else s: n in [1..m] ]; t:=&+T; s+:=t; Append(~S, t); end for; S; // Klaus Brockhaus, Jun 02 2009

Extensions

More terms from Klaus Brockhaus, Jun 02 2009

A058798 a(n) = n*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 5, 18, 85, 492, 3359, 26380, 234061, 2314230, 25222469, 300355398, 3879397705, 54011212472, 806288789375, 12846609417528, 217586071308601, 3903702674137290, 73952764737299909, 1475151592071860890
Offset: 0

Views

Author

Christian G. Bower, Dec 02 2000

Keywords

Comments

Note that a(n) = (a(n-1) + a(n+1))/(n+1). - T. D. Noe, Oct 12 2012; corrected by Gary Detlefs, Oct 26 2018
a(n) = log_2(A073888(n)) = log_3(A073889(n)).
a(n) equals minus the determinant of M(n+2) where M(n) is the n X n symmetric tridiagonal matrix with entries 1 just above and below its diagonal and diagonal entries 0, 1, 2, .., n-1. Example: M(4)=matrix([[0, 1, 0, 0], [1, 1, 1, 0], [0, 1, 2, 1], [0, 0, 1, 3]]). - Roland Bacher, Jun 19 2001
a(n) = A221913(n,-1), n>=1, is the numerator sequence of the n-th approximation of the continued fraction -(0 + K_{k>=1} (-1/k)) = 1/(1-1/(2-1/(3-1/(4-... The corresponding denominator sequence is A058797(n). - Wolfdieter Lang, Mar 08 2013
The recurrence equation a(n+1) = (A*n + B)*a(n) + C*a(n-1) with the initial conditions a(0) = 0, a(1) = 1 has the solution a(n) = Sum_{k = 0..floor((n-1)/2)} C^k*binomial(n-k-1,k)*( Product_{j = 1..n-2k-1} (k+j)*A + B ). This is the case A = 1, B = 1, C = -1. - Peter Bala, Aug 01 2013

Examples

			Continued fraction approximation 1/(1-1/(2-1/(3-1/4))) = 18/7 = a(4)/A058797(4). - _Wolfdieter Lang_, Mar 08 2013
		

Crossrefs

Column 1 of A007754.
Cf. A073888, A073889, A221913 (alternating row sums).

Programs

  • GAP
    a:=[1,2];; for n in [3..25] do a[n]:=n*a[n-1]-a[n-2]; od; Concatenation([0], a); # Muniru A Asiru, Oct 26 2018
    
  • Magma
    [0] cat [n le 2 select n else n*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 22 2016
    
  • Mathematica
    t = {0, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]]], {n, 2, 25}]; t (* T. D. Noe, Oct 12 2012 *)
    nxt[{n_,a_,b_}]:={n+1,b,b*(n+1)-a}; Transpose[NestList[nxt,{1,0,1},20]] [[2]] (* Harvey P. Dale, Nov 30 2015 *)
  • PARI
    m=30; v=concat([1,2], vector(m-2)); for(n=3, m, v[n] = n*v[n-1]-v[n-2]); concat(0, v) \\ G. C. Greubel, Nov 24 2018
  • Sage
    def A058798(n):
        if n < 3: return n
        return hypergeometric([1/2-n/2, 1-n/2],[2, 1-n, -n], -4)*factorial(n)
    [simplify(A058798(n)) for n in (0..20)] # Peter Luschny, Sep 10 2014
    

Formula

a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*binomial(n-k-1,k)*(n-k)!/(k+1)!. - Peter Bala, Aug 01 2013
a(n) = A058797(n+1) + A058799(n-1). - Henry Bottomley, Feb 28 2001
a(n) = Pi*(BesselY(1, 2)*BesselJ(n+1, 2) - BesselJ(1,2)* BesselY(n+1,2)). See the Abramowitz-Stegun reference given under A103921, p. 361 eq. 9.1.27 (first line with Y, J and z=2) and p. 360, eq. 9.1.16 (Wronskian). - Wolfdieter Lang, Mar 05 2013
Limit_{n->oo} a(n)/n! = BesselJ(1,2) = 0.576724807756873... See a comment on asymptotics under A084950.
a(n) = n!*hypergeometric([1/2-n/2, 1-n/2], [2, 1-n, -n], -4) for n >= 2. - Peter Luschny, Sep 10 2014

Extensions

New description from Amarnath Murthy, Aug 17 2002

A159924 Triangle read by rows: a(m,m) = 1, for all m. For n < m, a(m,n) = a(m-1,n) + (sum of all terms in rows 1 through m-1).

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 22, 21, 17, 1, 99, 98, 94, 78, 1, 546, 545, 541, 525, 448, 1, 3599, 3598, 3594, 3578, 3501, 3054, 1, 27577, 27576, 27572, 27556, 27479, 27032, 23979, 1, 240327, 240326, 240322, 240306, 240229, 239782, 236729, 212751, 1, 2343850
Offset: 1

Views

Author

Leroy Quet, Apr 26 2009

Keywords

Comments

Row sums are A159925. Sum of all terms in rows 1 through m is A159926(m). A159926(m) - A159926(m-1) = A159925(m), for m >= 2.

Examples

			The triangle starts like this:
1,
2,1,
6,5,1,
22,21,17,1
The sum of all these terms is 77. So adding 77 to each of the terms of the 4th row gets the fifth row: 22+77=99, 21+77=98, 17+77=94, 1+77=78, and the final terms is set at 1. So row 5 is: 99,98,94,78,1.
		

Crossrefs

Programs

  • Maple
    A159924 := proc(n,m) option remember ; local s; if n = m then 1; else s := add(add(procname(r,c),c=1..r),r=1..n-1) ; procname(n-1,m)+s ; fi; end: for n from 1 to 13 do for m from 1 to n do printf("%d,",A159924(n,m)) ; od: od: # R. J. Mathar, Apr 29 2009
  • Mathematica
    Block[{m = 0}, NestList[Block[{w = #}, AddTo[m, Total@ w]; Append[m + w, 1]] &, {1}, 9]] // Flatten (* Michael De Vlieger, Sep 23 2017 *)

Extensions

More terms from R. J. Mathar, Apr 29 2009

A159930 Triangle read by rows: a(1,1)=1. a(m,n) = a(m-1,n) + (sum of all terms in row m-1), for n

Original entry on oeis.org

1, 2, 1, 5, 4, 3, 17, 16, 15, 12, 77, 76, 75, 72, 60, 437, 436, 435, 432, 420, 360, 2957, 2956, 2955, 2952, 2940, 2880, 2520, 23117, 23116, 23115, 23112, 23100, 23040, 22680, 20160, 204557, 204556, 204555, 204552, 204540, 204480, 204120, 201600
Offset: 1

Views

Author

Leroy Quet, Apr 26 2009

Keywords

Comments

The sum of all terms in row m is (m+1)!/2. So a(m,n) = a(m-1,n) + m!/2, or is m!/2 if n=m.
Sum of m-th row = A001710(m+1). [Klaus Brockhaus, Jun 02 2009]
First column is A014288. - Franklin T. Adams-Watters, Oct 19 2013

Examples

			Triangle starts:
1;
2, 1;
5, 4, 3;
17, 16, 15, 12;
77, 76, 75, 72, 60;
		

Crossrefs

Cf. A159927.

Programs

  • Magma
    S:=[1]; T:=S; for m in [2..9] do s:=&+T; T:=[ n lt m select T[n]+s else s: n in [1..m] ]; S:=S cat T; end for; S; // Klaus Brockhaus, Jun 02 2009

Extensions

More terms from Klaus Brockhaus, Jun 02 2009
Showing 1-4 of 4 results.