A159928
a(n) is the sum of the terms of row n of triangle A159927.
Original entry on oeis.org
1, 3, 15, 91, 641, 5147, 46433, 465081, 5121789, 61513799, 800196799, 11208394387, 168193068805, 2691956450679, 45775335405729, 824136306116113, 15661462041469817, 313277888390065739, 6579708440058166031
Offset: 1
A058798
a(n) = n*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 5, 18, 85, 492, 3359, 26380, 234061, 2314230, 25222469, 300355398, 3879397705, 54011212472, 806288789375, 12846609417528, 217586071308601, 3903702674137290, 73952764737299909, 1475151592071860890
Offset: 0
Continued fraction approximation 1/(1-1/(2-1/(3-1/4))) = 18/7 = a(4)/A058797(4). - _Wolfdieter Lang_, Mar 08 2013
Other recurrences of this type:
A001040,
A036242,
A036244,
A053983,
A053984,
A053987,
A058307,
A058308,
A058309,
A058797,
A058799,
A075374,
A106174,
A121323,
A121351,
A121353,
A121354,
A222468,
A222470.
-
a:=[1,2];; for n in [3..25] do a[n]:=n*a[n-1]-a[n-2]; od; Concatenation([0], a); # Muniru A Asiru, Oct 26 2018
-
[0] cat [n le 2 select n else n*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 22 2016
-
t = {0, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]]], {n, 2, 25}]; t (* T. D. Noe, Oct 12 2012 *)
nxt[{n_,a_,b_}]:={n+1,b,b*(n+1)-a}; Transpose[NestList[nxt,{1,0,1},20]] [[2]] (* Harvey P. Dale, Nov 30 2015 *)
-
m=30; v=concat([1,2], vector(m-2)); for(n=3, m, v[n] = n*v[n-1]-v[n-2]); concat(0, v) \\ G. C. Greubel, Nov 24 2018
-
def A058798(n):
if n < 3: return n
return hypergeometric([1/2-n/2, 1-n/2],[2, 1-n, -n], -4)*factorial(n)
[simplify(A058798(n)) for n in (0..20)] # Peter Luschny, Sep 10 2014
A159924
Triangle read by rows: a(m,m) = 1, for all m. For n < m, a(m,n) = a(m-1,n) + (sum of all terms in rows 1 through m-1).
Original entry on oeis.org
1, 2, 1, 6, 5, 1, 22, 21, 17, 1, 99, 98, 94, 78, 1, 546, 545, 541, 525, 448, 1, 3599, 3598, 3594, 3578, 3501, 3054, 1, 27577, 27576, 27572, 27556, 27479, 27032, 23979, 1, 240327, 240326, 240322, 240306, 240229, 239782, 236729, 212751, 1, 2343850
Offset: 1
The triangle starts like this:
1,
2,1,
6,5,1,
22,21,17,1
The sum of all these terms is 77. So adding 77 to each of the terms of the 4th row gets the fifth row: 22+77=99, 21+77=98, 17+77=94, 1+77=78, and the final terms is set at 1. So row 5 is: 99,98,94,78,1.
-
A159924 := proc(n,m) option remember ; local s; if n = m then 1; else s := add(add(procname(r,c),c=1..r),r=1..n-1) ; procname(n-1,m)+s ; fi; end: for n from 1 to 13 do for m from 1 to n do printf("%d,",A159924(n,m)) ; od: od: # R. J. Mathar, Apr 29 2009
-
Block[{m = 0}, NestList[Block[{w = #}, AddTo[m, Total@ w]; Append[m + w, 1]] &, {1}, 9]] // Flatten (* Michael De Vlieger, Sep 23 2017 *)
A159930
Triangle read by rows: a(1,1)=1. a(m,n) = a(m-1,n) + (sum of all terms in row m-1), for n
Original entry on oeis.org
1, 2, 1, 5, 4, 3, 17, 16, 15, 12, 77, 76, 75, 72, 60, 437, 436, 435, 432, 420, 360, 2957, 2956, 2955, 2952, 2940, 2880, 2520, 23117, 23116, 23115, 23112, 23100, 23040, 22680, 20160, 204557, 204556, 204555, 204552, 204540, 204480, 204120, 201600
Offset: 1
Triangle starts:
1;
2, 1;
5, 4, 3;
17, 16, 15, 12;
77, 76, 75, 72, 60;
Showing 1-4 of 4 results.
Comments