cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159951 Fibonacci integral quotients associated with the dividends in A159950 and the divisors in A003481.

Original entry on oeis.org

12, 856800, 139890541190400, 50664770469826998541056000, 40527253814267058837705250384270510080000, 71554565901386985191123530075861409411081105273676595200000
Offset: 1

Views

Author

Enoch Haga, Apr 27 2009

Keywords

Comments

The first example of an integral quotient in the Fibonacci sequence is 12 because 240/20=12. 240 is the product of terms through 8, and 20 the sum. Thereafter, with every other additional pair of terms in the Fibonacci sequence, another integral quotient occurs.
Let m be an even positive integer. Then the sequence defined by b_m(n) = Product_{k = 1..2*n+1} F(m*k) / Sum_{k = 1..2*n+1} F(m*k) appears to be integral. - Peter Bala, Nov 12 2021

Examples

			The first two integral quotients occur in the Fibonacci sequence as illustrated by the following: (1*1*2*3*5*8)/(1+1+2+3+5+8) = 240/20 = 12, integral; (1*1*2*3*5*8*13*21*34*55)/(1+1+2+3+5+8+13+21+34+55) = 122522400/143 = 856800, integral.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    seq(mul(fibonacci(k), k = 1..4*n+2)/(fibonacci(4*n+4) - 1), n = 1..10); # Peter Bala, Nov 04 2021
  • UBASIC
    10 'Fibo 20 'R=SUM:S=PRODUCT 30 'T integral every other pair 40 A=1:S=1:print A;:S=S*1 50 B=1:print B;:S=S*B 60 C=A+B:print C;:R=R+C:S=S*C 70 D=B+C:print D;:R=R+D:R=R+2:print R:S=S*D:print S 80 T=S/R:if T=int(S/R) then print T:stop 90 A=C:B=D:R=R-2:goto 60

Formula

a(n) = (Product_{k = 1..4*n+2} Fibonacci(k))/(Sum_{k = 1..4*n+2} Fibonacci(k)) = (Product_{k = 1..4*n+2} Fibonacci(k))/(Fibonacci(4*n+4) - 1) = Fibonacci(2*n+1)/Fibonacci(2*n+3) * Product_{k = 1..4*n+1} Fibonacci(k), which shows a(n) is integral. Cf. A175553. - Peter Bala, Nov 11 2021