A160014 Generalized Clausen numbers (table read by antidiagonals).
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 2, 2, 3, 1, 1, 5, 30, 15, 5, 5, 1, 6, 2, 3, 1, 5, 1, 1, 7, 42, 21, 35, 35, 7, 7, 1, 2, 2, 15, 1, 5, 1, 7, 1, 1, 3, 30, 3, 5, 5, 7, 7, 1, 1, 1, 10, 2, 3, 1, 35, 1, 7, 1, 1, 1, 1, 11, 66, 165, 385, 55, 77, 77, 11, 11, 11, 11, 1
Offset: 0
Examples
[k\n][0--1--2---3---4---5---6---7----8----9---10---11----12---13---14----15] [0]...1..1..2...3...2...5...6...7....2....3...10...11.....6...13...14....15 [1]...1..2..6...2..30...2..42...2...30....2...66....2..2730....2....6.....2 [2]...1..3..3..15...3..21..15...3....3..165...21...39....15....3....3..1785 [3]...1..1..5...1..35...1...5...1..385....1...65....1....35....1...85.....1 [4]...1..5..5..35...5...5..35..55....5..455....5....5....35...85...55...665 [5]...1..1..7...1...7...1..77...1...91....1....7....1..1309....1..133.....1 T(3,4) = 35 = 5*7 because 5 and 7 are the only prime numbers p such that (p - 4) divides 3.
References
- Clausen, Thomas, "Lehrsatz aus einer Abhandlung ueber die Bernoullischen Zahlen", Astr. Nachr. 17 (1840), 351-352.
Links
- Charles R Greathouse IV, Rows n = 0..100, flattened
- A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhäuser, Basel, 1962-1963, see Vol. 2, No. LXVII.
- Peter Luschny, Generalized Bernoulli numbers.
Programs
-
Maple
Clausen := proc(n,k) local S,i; S := numtheory[divisors](n); S := map(i->i+k,S); S := select(isprime,S); mul(i,i=S) end:
-
Mathematica
t[0, ] = 1; t[n, k_] := Times @@ (Select[Divisors[n], PrimeQ[# + k] &] + k); Table[t[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
-
PARI
T(n,k)=if(n,my(s=1);fordiv(n,d,if(isprime(d+k),s*=d+k)); s, 1) for(s=0,9,for(k=0,s,print1(T(s-k,k)", "))) \\ Charles R Greathouse IV, Jun 26 2013
-
Sage
def Clausen(n, k): if k == 0: return 1 return mul(filter(lambda s: is_prime(s), map(lambda i: i+n, divisors(k)))) for n in (0..5): [Clausen(n, k) for k in (0..15)] # Peter Luschny, Jun 05 2013
Extensions
Swapped n<>k fixed by Peter Luschny, May 04 2009
Comments