cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160014 Generalized Clausen numbers (table read by antidiagonals).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 2, 2, 3, 1, 1, 5, 30, 15, 5, 5, 1, 6, 2, 3, 1, 5, 1, 1, 7, 42, 21, 35, 35, 7, 7, 1, 2, 2, 15, 1, 5, 1, 7, 1, 1, 3, 30, 3, 5, 5, 7, 7, 1, 1, 1, 10, 2, 3, 1, 35, 1, 7, 1, 1, 1, 1, 11, 66, 165, 385, 55, 77, 77, 11, 11, 11, 11, 1
Offset: 0

Views

Author

Peter Luschny, Apr 29 2009

Keywords

Comments

T(n,k) = Product_{ p - k | n} p, where p is prime.
T(n,0) is the squarefree kernel of n (A007947).
T(n,1) are the classical Clausen numbers (A141056). The classical Clausen numbers are by the von Staudt-Clausen theorem the denominators of the Bernoulli numbers.

Examples

			[k\n][0--1--2---3---4---5---6---7----8----9---10---11----12---13---14----15]
[0]...1..1..2...3...2...5...6...7....2....3...10...11.....6...13...14....15
[1]...1..2..6...2..30...2..42...2...30....2...66....2..2730....2....6.....2
[2]...1..3..3..15...3..21..15...3....3..165...21...39....15....3....3..1785
[3]...1..1..5...1..35...1...5...1..385....1...65....1....35....1...85.....1
[4]...1..5..5..35...5...5..35..55....5..455....5....5....35...85...55...665
[5]...1..1..7...1...7...1..77...1...91....1....7....1..1309....1..133.....1
T(3,4) = 35 = 5*7 because 5 and 7 are the only prime numbers p such that
(p - 4) divides 3.
		

References

  • Clausen, Thomas, "Lehrsatz aus einer Abhandlung ueber die Bernoullischen Zahlen", Astr. Nachr. 17 (1840), 351-352.

Crossrefs

Programs

  • Maple
    Clausen := proc(n,k) local S,i;
    S := numtheory[divisors](n);
    S := map(i->i+k,S);
    S := select(isprime,S);
    mul(i,i=S) end:
  • Mathematica
    t[0, ] = 1; t[n, k_] := Times @@ (Select[Divisors[n], PrimeQ[# + k] &] + k); Table[t[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
  • PARI
    T(n,k)=if(n,my(s=1);fordiv(n,d,if(isprime(d+k),s*=d+k)); s, 1)
    for(s=0,9,for(k=0,s,print1(T(s-k,k)", "))) \\ Charles R Greathouse IV, Jun 26 2013
  • Sage
    def Clausen(n, k):
        if k == 0: return 1
        return mul(filter(lambda s: is_prime(s), map(lambda i: i+n, divisors(k))))
    for n in (0..5): [Clausen(n, k) for k in (0..15)]   # Peter Luschny, Jun 05 2013
    

Extensions

Swapped n<>k fixed by Peter Luschny, May 04 2009