cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A268432 a(n) = Pochhammer(n+1, n)/Clausen(n, 1) = A001813(n) / A160014(n, 1).

Original entry on oeis.org

1, 1, 2, 60, 56, 15120, 15840, 8648640, 17297280, 8821612800, 10158220800, 14079294028800, 474467051520, 32382376266240000, 582882772792320000, 101421602465863680000, 24659370011308032000, 415017197290314178560000, 72810034612335820800000, 2149789081963827444940800000
Offset: 0

Views

Author

Peter Luschny, Feb 14 2016

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) numtheory[divisors](n); map(i->i+1, %);
    iquo(mul(4*k+2,k in (0..n-1)), mul(k,k in select(isprime, %))) end:
    seq(a(n), n=0..19);
  • Sage
    def A268432(n):
        if n <= 1: return 1
        r = rising_factorial(n+1,n)//bernoulli(n).denominator()
        return r if is_even(n) else r//2
    [A268432(n) for n in range(20)]

Formula

Let b(n) = Pochhammer(n+1,n)/denominator(Bernoulli(n)) then a(2*n) = b(2*n) for n >= 0 and 2*a(2*n+1) = b(2*n+1) for n >= 1 by the von Staudt-Clausen theorem.

A368092 a(n) = A160014(m, n) * a(n - 1) for m = 2 and n > 0, a(0) = 1.

Original entry on oeis.org

1, 3, 9, 135, 405, 8505, 127575, 382725, 1148175, 189448875, 3978426375, 155158628625, 2327379429375, 6982138288125, 20946414864375, 37389350532909375, 112168051598728125, 6393578941127503125, 1054940525286038015625, 3164821575858114046875, 66461253093020394984375
Offset: 0

Views

Author

Peter Luschny, Dec 12 2023

Keywords

Comments

A160014 are the generalized Clausen numbers. For m = 0 the formula computes the cumulative radical A048803, for m = 1 the Hirzebruch numbers A091137.

Crossrefs

Cf. A160014, A048803 (m=0), A091137 (m=1), this sequence (m=2), A368093 (array), A368048, A368117.

Programs

  • SageMath
    from functools import cache
    @cache
    def a_rec(n):
        if n == 0: return 1
        p = mul(s for s in map(lambda i: i + 2, divisors(n)) if is_prime(s))
        return p * a_rec(n - 1)
    print([a_rec(n) for n in range(21)])
    # Alternatively, but less efficient:
    def a(n): return (2**(n%2 - n) * lcm(product(r + 2 for r in p) for p in Partitions(n)))

Formula

a(n) = 2^(n mod 2 - n)*lcm_{p in Partitions(n)} (Product_{t in p}(t + 2)).
a(n) = 2^(n mod 2 - n)*A368048(n).
a(n) = A368117(n) * a(n-1) for n > 0.

A325871 a(n) = n!*ClausenNumber(n, 1)/(n + 1), Clausen numbers defined in A160014.

Original entry on oeis.org

1, 1, 4, 3, 144, 40, 4320, 1260, 134400, 72576, 21772800, 6652800, 100590336000, 889574400, 34871316480, 163459296000, 627683696640000, 39520825344000, 268899695640576000, 12164510040883200, 38231317271347200000, 4644631106519040000, 6744004366665646080000
Offset: 0

Views

Author

Peter Luschny, Jun 26 2019

Keywords

Crossrefs

Programs

  • Maple
    # Function Clausen defined in A160014.
    seq(n!*Clausen(n,1)/(n+1), n=0..27);

Formula

a(n) = A194587(n, n).

A346465 Numbers k such that (4^k - 2)*(4^k - 1)/Clausen(2*k, 1) is not squarefree, where Clausen(n, m) = A160014(n, m).

Original entry on oeis.org

9, 11, 18, 27, 32, 36, 45, 50, 53, 54, 63, 68, 72, 74, 78, 81, 90, 95, 99, 100, 108, 116, 117, 126, 127, 135, 137, 144, 147, 150, 153, 155, 158, 162, 171, 179, 180, 182, 189, 198, 200, 204, 207, 216, 221, 225, 233, 234, 242, 243, 250, 252, 261, 263, 270, 279
Offset: 1

Views

Author

Peter Luschny, Jul 20 2021

Keywords

Comments

Also numbers k such that 6*GaussBinomial(2*k, 2, 2)/denominator(Bernoulli(2*k, 1)) is not squarefree.

Crossrefs

Programs

  • Maple
    with(NumberTheory): isa := n -> not IsSquareFree(((4^n - 2)*(4^n - 1))/
    mul(i, i = select(isprime, map(i -> i+1, Divisors(2*n))))):
    select(isa, [$(1..100)]);
  • Mathematica
    q[n_] := Product[k, {k, Select[Table[d + 1, {d, Divisors[2 n]}], PrimeQ]}];
    isA[n_] := ! SquareFreeQ[((4^n - 2) (4^n -1)) / q[n]];
    Select[Range[50],  isA]

Formula

The positive multiples of 9 form a subsequence.
k is a term if and only if A346463(k) > A007947(A346463(k)).

Extensions

More terms from Jinyuan Wang, Jul 23 2021

A363523 k is a term of this sequence if and only if Clausen(k, 0) divides Clausen(k, 2). (Clausen = A160014.)

Original entry on oeis.org

1, 3, 9, 15, 27, 45, 75, 81, 99, 105, 135, 225, 243, 255, 297, 315, 375, 405, 495, 525, 675, 729, 735, 765, 783, 891, 945, 1089, 1125, 1215, 1275, 1287, 1485, 1575, 1785, 1875, 2025, 2115, 2187, 2205, 2295, 2349, 2415, 2475, 2625, 2673, 2835, 3267, 3375, 3465
Offset: 1

Views

Author

Peter Luschny, Jun 08 2023

Keywords

Comments

k is a term of A124240 if and only if Clausen(k, 0) divides Clausen(k, 1).

Crossrefs

Programs

  • Maple
    # Using function 'Clausen' from A160014.
    aList := m -> select(k -> irem(Clausen(k, 2), Clausen(k, 0)) = 0, [seq(1..m)]):
    aList(3500);

A345365 a(n) = (2*n)!*Pi^(-2*n)*PolyLog(2*n, 1)*Clausen(2*n - 1)/2, where Clausen(n) = A160014(n, 1).

Original entry on oeis.org

1, 4, 16, 64, 1280, 707584, 28672, 59260928, 2874867712, 45773225984, 896021823488, 991382852337664, 143497256501248, 1593799350268461056, 2312797281748024033280, 8277820436597920759808, 11071085050982544965632, 452092922822895257024443973632
Offset: 1

Views

Author

Peter Luschny, Aug 21 2021

Keywords

Crossrefs

Cf. A160014.

Programs

  • Mathematica
    Clausen[n_] := Times @@ (Select[Divisors[n + 1], PrimeQ[# + 1] &] + 1);
    a[n_] := (2 n)! PolyLog[2 n, 1] Pi^(-2 n) Clausen[2 n - 1] / 2;
    Table[a[n], {n, 1, 18}]

A002445 Denominators of Bernoulli numbers B_{2n}.

Original entry on oeis.org

1, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770, 6, 33330, 4326, 1590, 642, 209191710, 1518, 1671270, 42
Offset: 0

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.
Row products of A138239. - Mats Granvik, Mar 08 2008
Equals row products of even rows in triangle A143343. In triangle A080092, row products = denominators of B1, B2, B4, B6, ... . - Gary W. Adamson, Aug 09 2008
Julius Worpitzky's 1883 algorithm for generating Bernoulli numbers is shown in A028246. - Gary W. Adamson, Aug 09 2008
There is a relation between the Euler numbers E_n and the Bernoulli numbers B_{2*n}, for n>0, namely, B_{2*n} = A000367(n)/a(n) = ((-1)^n/(2*(1-2^{2*n}))) * Sum_{k = 0..n-1} (-1)^k*2^{2*k}*C(2*n,2*k)*A000364(n-k)*A000367(k)/a(k). (See Bucur, et al.) - L. Edson Jeffery, Sep 17 2012
a(n) is the product of all primes of the form (k + n)/(k - n). - Thomas Ordowski, Jul 24 2025

Examples

			B_{2n} = [ 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510, ... ].
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 136.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • See A000367 for further references and links (there are a lot).

Crossrefs

Cf. A090801 (distinct numbers appearing as denominators of Bernoulli numbers)
B_n gives A027641/A027642. See A027641 for full list of references, links, formulas, etc.
Cf. A160014 for a generalization.

Programs

  • Magma
    [Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
    
  • Maple
    A002445 := n -> mul(i,i=select(isprime,map(i->i+1,numtheory[divisors] (2*n)))): seq(A002445(n),n=0..40); # Peter Luschny, Aug 09 2011
    # Alternative
    N:= 1000: # to get a(0) to a(N)
    A:= Vector(N,2):
    for p in select(isprime,[seq(2*i+1,i=1..N)]) do
      r:= (p-1)/2;
      for n from r to N by r do
        A[n]:= A[n]*p
      od
    od:
    1, seq(A[n],n=1..N); # Robert Israel, Nov 16 2014
  • Mathematica
    Take[Denominator[BernoulliB[Range[0,100]]],{1,-1,2}] (* Harvey P. Dale, Oct 17 2011 *)
  • PARI
    a(n)=prod(p=2,2*n+1,if(isprime(p),if((2*n)%(p-1),1,p),1)) \\ Benoit Cloitre
    
  • PARI
    A002445(n,P=1)=forprime(p=2,1+n*=2,n%(p-1)||P*=p);P \\ M. F. Hasler, Jan 05 2016
    
  • PARI
    a(n) = denominator(bernfrac(2*n)); \\ Michel Marcus, Jul 16 2021
    
  • Sage
    def A002445(n):
        if n == 0:
            return 1
        M = (i + 1 for i in divisors(2 * n))
        return prod(s for s in M if is_prime(s))
    [A002445(n) for n in (0..57)] # Peter Luschny, Feb 20 2016

Formula

E.g.f: x/(exp(x) - 1); take denominators of even powers.
B_{2n}/(2n)! = 2*(-1)^(n-1)*(2*Pi)^(-2n) Sum_{k=1..inf} 1/k^(2n) (gives asymptotics) - Rademacher, p. 16, Eq. (9.1). In particular, B_{2*n} ~ (-1)^(n-1)*2*(2*n)!/ (2*Pi)^(2*n).
If n>=3 is prime,then a((n+1)/2)==(-1)^((n-1)/2)*12*|A000367((n+1)/2)|(mod n). - Vladimir Shevelev, Sep 04 2010
a(n) = denominator(-I*(2*n)!/(Pi*(1-2*n))*integral(log(1-1/t)^(1-2*n) dt, t=0..1)). - Gerry Martens, May 17 2011
a(n) = 2*denominator((2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 28 2012
a(n) = gcd(2!S(2n+1,2),...,(2n+1)!S(2n+1,2n+1)). Here S(n,k) is the Stirling number of the second kind. See the paper of Komatsu et al. - Istvan Mezo, May 12 2016
a(n) = 2*A001897(n) = A027642(2*n) = 3*A277087(n) for n>0. - Jonathan Sondow, Dec 14 2016

A091137 The Hirzebruch numbers. a(n) = Product_{2 <= p <= n+1, p prime} p^floor(n / (p - 1)).

Original entry on oeis.org

1, 2, 12, 24, 720, 1440, 60480, 120960, 3628800, 7257600, 479001600, 958003200, 2615348736000, 5230697472000, 31384184832000, 62768369664000, 32011868528640000, 64023737057280000, 51090942171709440000, 102181884343418880000, 33720021833328230400000, 67440043666656460800000
Offset: 0

Views

Author

Henry Bottomley, Dec 19 2003

Keywords

Comments

Largest number m such that number of times m divides k! is almost k/n for large k, i.e., largest m with A090624(m) = n.
This is always a relatively small multiple of n!, since the multiplicity with which a prime p divides n! is always <= n/(p-1); it is equal to floor(n/(p-1)) at least when n is a power of p. - Franklin T. Adams-Watters, May 31 2010
At least for most small n, a(n) = A002790(n) * n!; the first difference is n=15. It appears that A002790(n) * n! always divides a(n).
Conjecture: The denominators of the series reversion of the sequence with e.g.f. Polylog(2,x). - Benedict W. J. Irwin, Jan 05 2017
Not only is a(n) divisible by n!; a(n) is divisible by (n + 1)! as has been observed by Bedhouche and Bakir (see links and A363596). - Hal M. Switkay, Aug 15 2025

Examples

			Let n = 4. The partitions of 4 are [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]. Thus a(4) = lcm([5, 4*2, 3*3, 3*2*2, 2*2*2*2]) = 720.
		

References

  • P. Curtz, Integration numérique ..., Note 12, C.C.S.A., Arcueil, 1969; see pp. 36, 56.
  • F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; Lemma 1.7.3, p. 14. [From N. J. A. Sloane, Sep 06 2010]

Crossrefs

Starts similarly to A002207 especially for even n and all values of A002207 seen so far seem to divide a(n).

Programs

  • Maple
    A091137 := proc(n) local a,i,p ; a := 1 ; for i from 1 do p := ithprime(i) ; if p > n+1 then break; fi; a := a*p^floor(n/(p-1)) ; od: a ; end:
    seq(A091137(n), n = 0..47); # R. J. Mathar, Feb 23 2009
  • Mathematica
    A027760[n_] := Product[d, {d, Select[ Divisors[n] + 1, PrimeQ]}]; a[n_] := a[n] = A027760[n]*a[n-1]; a[0] = 1; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 04 2011 *)
  • PARI
    a(n) = local(r); r=1; forprime(p=2, n+1, r*=p^(n\(p-1))); r
    \\ Franklin T. Adams-Watters, May 31 2010
    
  • Python
    from math import prod
    from sympy import primerange
    def A091137(n): return prod(p**(n//(p-1)) for p in primerange(n+2))
    # Chai Wah Wu, Apr 28 2023
    
  • SageMath
    def a(n): return lcm(product(r + 1 for r in p) for p in Partitions(n))
    # Or, more efficient:
    from functools import cache
    @cache
    def a_rec(n):
        if n == 0: return 1
        p = mul(s for s in map(lambda i: i + 1, divisors(n)) if is_prime(s))
        return p * a_rec(n - 1)
    print([a_rec(n) for n in range(22)]) # Peter Luschny, Dec 12 2023

Formula

a(n) = Product_p {p prime} p^floor(n/(p-1)).
a(2n+1) = 2*a(2n).
a(n+1) = A027760(n+1)*a(n). - Paul Curtz, Aug 01 2008
From Peter Luschny, Dec 11 2023: (Start)
a(n) = lcm_{p in P(n)} Product_{r in p}(r + 1), where P(n) are the partitions of n.
a(n) = lcm(A238963row(n)).
a(n) = A368116(1, n), seen as the lcm of the product of the 1-shifted partitions.
a(n) = A368093(1, n), seen as the cumulative product of the Clausen numbers A160014(1, n). (End)
a(n) = lcm({k: A275314(k) = n+1}). - Hal M. Switkay, Aug 13 2025
a(n) = (n + 1)! * A363596(n). - Hal M. Switkay, Aug 15 2025

Extensions

New name using a formula of the author by Peter Luschny, Dec 11 2023

A124240 Numbers n such that lambda(n) divides n, where lambda is Carmichael's function (A002322).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, 48, 54, 60, 64, 72, 80, 84, 96, 100, 108, 120, 126, 128, 144, 156, 160, 162, 168, 180, 192, 200, 216, 220, 240, 252, 256, 272, 288, 294, 300, 312, 320, 324, 336, 342, 360, 378, 384, 400, 420, 432, 440, 468, 480
Offset: 1

Views

Author

Alexander Adamchuk, Oct 22 2006

Keywords

Comments

Numbers n such that A124239(n) is divisible by n.
If k is in the sequence then 2k is also in the sequence, but if 2m is in the sequence m is not necessarily a term of the sequence.
This sequence is a subsequence of A068563. The first term that is different is A068563(27) = 136. The terms of A068563 that are not the terms of a(n) are listed in A124241.
Also, the sequence of numbers n such that p-1 divides n for all primes p that divide n. - Leroy Quet, Jun 27 2008
Numbers n such that b^n == 1 (mod n) for every b coprime to n. - Thomas Ordowski, Jun 23 2017
Numbers m such that every divisor < m is the difference between two divisors of m. - Michel Lagneau, Aug 11 2017
All terms > 1 in this sequence are even. Furthermore, either 4 or 6 divides a(n) for n > 3. 1806 is the largest squarefree term. - Paul Vanderveen, Apr 24 2022

Examples

			a(1) = 1 because 1 divides A124239(1) = 1.
a(2) = 2 because 2 divides A124239(2) = 14.
a(3) = 4 because 4 divides A124239(4) = 3704, but 3 does not divide A124239(3) = 197.
		

Crossrefs

Programs

  • Haskell
    a124240 n = a124240_list !! (n-1)
    a124240_list = filter
       (\x -> all (== 0) $ map ((mod x) . pred) $ a027748_row x) [1..]
    -- Reinhard Zumkeller, Aug 27 2013
    
  • Maple
    a:= proc(n) option remember; local k;
           for k from `if`(n=1, 0, a(n-1))+1 while
           irem(k, numtheory[lambda](k))>0 do od: k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 04 2021
    # Using function 'Clausen' from A160014:
    aList := m -> select(k -> irem(Clausen(k, 1), Clausen(k, 0)) = 0, [seq(1..m)]):
    aList(480); # Peter Luschny, Jun 08 2023
  • Mathematica
    Do[f=n + Sum[ (2k-1)((2k-1)^n-1) / (2(k-1)), {k,2,n} ]; If[IntegerQ[f/n],Print[n]],{n,1,900}]
    Flatten[Position[Table[n/CarmichaelLambda[n], {n, 440}], Integer]] (* _T. D. Noe, Sep 11 2008 *)
  • PARI
    is(n)=n%lcm(znstar(n)[2])==0 \\ Charles R Greathouse IV, Feb 11 2015
    
  • Python
    from itertools import islice, count
    from sympy.ntheory.factor_ import reduced_totient
    def A124240gen(): return filter(lambda n:n % reduced_totient(n) == 0,count(1))
    A124240_list = list(islice(A124240gen(),20)) # Chai Wah Wu, Dec 11 2021

Formula

k is in a <=> Clausen(k, 0) divides Clausen(k, 1), (Clausen = A160014). - Peter Luschny, Jun 08 2023

Extensions

New definition from T. D. Noe, Aug 31 2008
Edited by Max Alekseyev, Aug 25 2013

A001897 Denominators of cosecant numbers: -2*(2^(2*n-1)-1)*Bernoulli(2*n).

Original entry on oeis.org

1, 3, 15, 21, 15, 33, 1365, 3, 255, 399, 165, 69, 1365, 3, 435, 7161, 255, 3, 959595, 3, 6765, 903, 345, 141, 23205, 33, 795, 399, 435, 177, 28393365, 3, 255, 32361, 15, 2343, 70050435, 3, 15, 1659, 115005, 249, 1702155, 3, 30705, 136059, 705, 3, 2250885, 3, 16665, 2163
Offset: 0

Views

Author

Keywords

Comments

Same as half the denominators of the even-indexed Bernoulli numbers B_{2*n} for n>0, by the von Staudt-Clausen theorem and Fermat's little theorem. - Bernd C. Kellner and Jonathan Sondow, Jan 02 2017 [This is implemented in the second Maple program. - Peter Luschny, Aug 21 2021]

Examples

			Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = A001896/A001897.
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
  • S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
  • N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Denominator(2*(1-2^(2*n-1))*Bernoulli(2*n)): n in [0..55]]; // G. C. Greubel, Apr 06 2019
  • Maple
    b := n -> bernoulli(n)*2^add(i,i=convert(n,base,2));
    a := n -> denom(b(2*n)); # Peter Luschny, May 02 2009
    # Alternative :
    Clausen := proc(n) local i,S; map(i->i+1, numtheory[divisors](n));
    S := select(isprime, %); if S <> {} then mul(i,i=S) else NULL fi end:
    A001897_list := n -> [1,seq(Clausen(2*i)/2,i=1..n-1)];
    A001897_list(52); # Peter Luschny, Oct 03 2011
  • Mathematica
    a[n_] := Denominator[-2*(2^(2*n-1)-1)*BernoulliB[2*n]]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Sep 11 2013 *)
  • PARI
    a(n) = denominator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Apr 06 2019
    
  • Sage
    def A001897(n):
        if n == 0:
            return 1
        M = (d + 1 for d in divisors(2 * n))
        return prod(s for s in M if is_prime(s)) / 2
    [A001897(n) for n in range(55)]  # Peter Luschny, Feb 20 2016
    

Formula

a(0)=1, a(n)=(1/2)*A002445(n) for n>=1. - Joerg Arndt, May 07 2012
a(n) = denominator((2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 29 2012
a(0)=1, a(n) = (1/2)*A027642(2*n) = (3/2)*A277087(n) for n>=1. - Jonathan Sondow, Dec 14 2016
From Peter Luschny, Sep 06 2017: (Start)
a(n) = denominator(r(n)) where r(n) = Sum_{0..n} (-1)^(n-k)*A241171(n, k)/(2*k+1).
a(n) = denominator(bernoulli(2*n, 1/2))/4^n = A033469(n)/4^n. (End)
Apparently a(n) = denominator(Sum_{k=0..2*n-2} (-1)^k*E2(2*n-1, k+1)/binomial(4*n-1, k+1)), where E2(n, k) denotes the second-order Eulerian numbers A340556. - Peter Luschny, Feb 17 2021
Showing 1-10 of 38 results. Next