cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A264437 a(n) = Bernoulli(n, 1)*Pochhammer(n+1, n).

Original entry on oeis.org

1, 1, 2, 0, -56, 0, 15840, 0, -17297280, 0, 50791104000, 0, -327856732600320, 0, 4080179409546240000, 0, -89192941330901151744000, 0, 3193957788339335451033600000, 0, -177450861021098776794591068160000, 0, 14644425624059165645548485417369600000, 0
Offset: 0

Views

Author

Peter Luschny, Feb 14 2016

Keywords

Crossrefs

Cf. A001813, A027641, A268432, A000108 (Catalan), A173018 (Eulerian first order).

Programs

  • Maple
    seq(pochhammer(n+1,n)*bernoulli(n,1),n=0..23);
    # For illustration:
    e1 := proc(n, k) combinat:-eulerian1(n, k) end:
    catalan := n -> binomial(2*n, n)/(n + 1):
    a := n -> catalan(n)*add(e1(n, k)*k!*(n - k)!*(-1)^k, k = 0..n): # Peter Luschny, Aug 13 2022
  • Mathematica
    a[n_] := BernoulliB[n, 1]*Pochhammer[n+1, n];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 13 2023 *)
  • PARI
    a(n) = subst(bernpol(n), 'x, 1) *(2*n)!/n!; \\ Michel Marcus, Nov 13 2023
  • Sage
    def A264437(n):
        return bernoulli_polynomial(1,n)*factorial(2*n)//factorial(n)
    [A264437(n) for n in range(24)]
    

Formula

a(n) = CatalanNumber(n)*Sum_{k=0..n} Eulerian1(n, k)*k!*(n - k)!*(-1)^k. # Peter Luschny, Aug 13 2022

Extensions

Name and data changed to comply with Bernoulli(n,1) by Peter Luschny, Aug 13 2022
Showing 1-1 of 1 results.