cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160027 Primes of the form 2^(2^k)+15.

Original entry on oeis.org

17, 19, 31, 271, 65551, 4294967311
Offset: 1

Views

Author

Cino Hilliard, Apr 30 2009

Keywords

Comments

Fermat primes of order 15.
The number of Fermat primes of order 15 exceeds the number of known Fermat primes.
Terms given correspond to n= 0, 1, 2, 3, 4 and 5.
Next term >= 2^2^16 + 15. - Vincenzo Librandi, Jun 07 2016
Next term >= 2^2^17 + 15. - Charles R Greathouse IV, Jun 07 2016

Examples

			For k = 5, 2^32 + 15 = 4294967311 is prime.
		

Crossrefs

Cf. A019434 (order 1), A104067 (superset for order 13), A160028 (order 81).
Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+15]; // Vincenzo Librandi, Jun 07 2016
  • Mathematica
    Select[Table[2^(2^n) + 15, {n, 0, 10}], PrimeQ] (* Vincenzo Librandi, Jun 07 2016 *)
  • PARI
    g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
    

Formula

Intersection of the primes and the set of Fermat numbers F(k,m) = 2^(2^k)+m of order m=15.

Extensions

Edited by R. J. Mathar, May 08 2009