A160027 Primes of the form 2^(2^k)+15.
17, 19, 31, 271, 65551, 4294967311
Offset: 1
Keywords
Examples
For k = 5, 2^32 + 15 = 4294967311 is prime.
Crossrefs
Programs
-
Magma
[a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+15]; // Vincenzo Librandi, Jun 07 2016
-
Mathematica
Select[Table[2^(2^n) + 15, {n, 0, 10}], PrimeQ] (* Vincenzo Librandi, Jun 07 2016 *)
-
PARI
g(n,m) = for(x=0,n,y=2^(2^x)+m;if(ispseudoprime(y),print1(y",")))
Formula
Intersection of the primes and the set of Fermat numbers F(k,m) = 2^(2^k)+m of order m=15.
Extensions
Edited by R. J. Mathar, May 08 2009
Comments