cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160096 Partial sums of A010815 starting with offset 1, and signed (+ + - - + + ...).

Original entry on oeis.org

1, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Gary W. Adamson, May 01 2009

Keywords

Comments

INVERT transform of the sequence = A137682: (1, 3, 7, 17, 40, 96, 228, ...).
From Mats Granvik, Jan 01 2015: (Start)
(1) The positive integers are the row sums of the infinite lower triangular matrix "t" starting:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
...
which satisfies the recurrence:
t(n, 1) = 1; t(n, k) = Sum_{i=1..n-1} t(n-i, k-1) - Sum_{i=1..n-1} t(n-i, k) if n >= k, otherwise 0;
(2) This sequence a(n), in turn, is the row sums of the infinite lower triangular matrix "t" starting:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, ...
1, 0, 0, 1, 0, 0, 0, ...
1, 0,-1, 0, 1, 0, 0, ...
1, 0, 0,-1, 0, 1, 0, ...
1, 0, 0,-1,-1, 0, 1, ...
...
which satisfies the recurrence:
t(n, 1) = 1; t(n, k) = Sum_{i=1..k-1} t(n-i, k-1) - Sum_{i=1..n-1} t(n-i, k) if n >= k, otherwise 0;
(3) The partition numbers are the row sums of the infinite lower triangular matrix "t" starting:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, 0, ...
1, 2, 1, 1, 0, 0, 0, ...
1, 2, 2, 1, 1, 0, 0, ...
1, 3, 3, 2, 1, 1, 0, ...
1, 3, 4, 3, 2, 1, 1, ...
...
which satisfies the recurrence:
t(n, 1) = 1; t(n, k) = Sum_{i=1..n-1} t(n-i, k-1) - Sum_{i=1..k-1} t(n-i, k) if n >= k, otherwise 0;
(4) The number of divisors of "n" is the row sums of the infinite lower triangular matrix "t" starting:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, 0, ...
1, 0, 0, 0, 1, 0, 0, ...
1, 1, 1, 0, 0, 1, 0, ...
1, 0, 0, 0, 0, 0, 1, ...
...
which satisfies the recurrence:
t(n, 1) = 1; t(n, k) = Sum_{i=1..k-1} t(n-i, k-1) - Sum_{i=1..k-1} t(n-i, k) if n >= k, otherwise 0.
In the four cases of recurrences only the summation indices within the sums change, from (1) "n-1" and "n-1" to (2) "k-1" and "n-1" to (3) "n-1" and "k-1" to (4) "k-1" and "k-1".
(End)

Examples

			The series begins (1, 2, 2, 2, 1, 1, 0, ...) since the signed q-series = (1, 1, 0, 0, -1, 0, ...).
G.f. = x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6 + x^12 + x^13 + x^14 + ...
		

Crossrefs

Cf. (1) A000027, (2) A160096, (3) A000041, (4) A000005.

Programs

  • Mathematica
    (* A160096 as row sums of recursively defined table *)
    Clear[t]; nn = 90; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] - Sum[t[n - i, k], {i, 1, n - 1}], 0]; PartialSumsOfEulerqSeries = Table[Sum[t[n, k], {k, 1, n}], {n, 1, nn}] (* Mats Granvik, Jan 01 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ x]) / (1 - x), {x, 0, n}]; (* Michael Somos, Jan 02 2015 *)
    CoefficientList[Series[q*(1/(1 - q)^(2)*QHypergeometricPFQ[{q, q}, {q^2, q}, q, q^2]), {q, 0, 89}], q] (* Mats Granvik, Jan 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - eta(x + x * O(x^n))) / (1 - x), n))}; /* Michael Somos, Jan 02 2015 */

Formula

Partial sums of Euler's q series (signed), starting from offset 1 = (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, ...).
G.f.: (1 - f(-x)) / (1 - x) where f(-x) is the g.f. of A010815. - Michael Somos, Jan 02 2015
Partial sums of A257628. - Georg Fischer, May 29 2023

Extensions

More terms from Mats Granvik, Jan 01 2015