A160136 Lodumo_9 of Fibonacci numbers.
0, 1, 10, 2, 3, 5, 8, 4, 12, 7, 19, 17, 9, 26, 35, 16, 6, 13, 28, 14, 15, 11, 44, 37, 18, 46, 55, 20, 21, 23, 53, 22, 30, 25, 64, 62, 27, 71, 80, 34, 24, 31, 73, 32, 33, 29, 89, 82, 36, 91, 100, 38, 39, 41, 98, 40, 48, 43, 109, 107, 45, 116, 125, 52, 42, 49, 118, 50, 51, 47, 134
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..9999
- Michael De Vlieger, Plot (n, a(n)) for 1 <= n <=144 illustrating bifurcation into two rays color coded red and blue, and the effect of the Pisano number (mod 9) = 24.
- Michael De Vlieger, Plot (n, a(n)) for 1 <= n <= 24 with the 2 rays color coded red and blue, with coordinates of points labeled.
- OEIS wiki, Lodumo transform
- Index entries for sequences that are permutations of the natural numbers
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
Programs
-
Mathematica
Block[{m = 9, s = Fibonacci[Range[120]]}, Nest[Append[#1, Block[{k = 1}, While[Nand[Mod[k, m] == Mod[s[[#2]], m], FreeQ[#1, k]], k++]; k]] & @@ {#, Length@ #} &, {0}, 120]] (* Michael De Vlieger, Jan 21 2021 *)
Formula
a(n) = lod_9(A000045(n)).
a(n) = 2*a(n-24) - a(n-48) for n >= 48. - Philippe Deléham, Mar 09 2023
a(n) = a(n-12) + a(n-24) - a(n-36) for n >= 36. - Ray Chandler, Sep 10 2023
Extensions
Replaced second 18 by 118 - R. J. Mathar, May 03 2009
Comments