A160200 Positive numbers y such that y^2 is of the form x^2+(x+761)^2 with integer x.
541, 761, 1465, 1781, 3805, 8249, 10145, 22069, 48029, 59089, 128609, 279925, 344389, 749585, 1631521, 2007245, 4368901, 9509201, 11699081, 25463821, 55423685, 68187241, 148414025, 323032909, 397424365, 865020329, 1882773769
Offset: 1
Keywords
Examples
(-341, a(1)) = (-341, 541) is a solution: (-341)^2+(-341+761)^2 = 116281+176400 = 292681 = 541^2. (A122694(1), a(2)) = (0, 761) is a solution: 0^2+(0+761)^2 = 579121 = 761^2. (A122694(3), a(4)) = (820, 1781) is a solution: 820^2+(820+761)^2 = 672400+2499561 = 3171961 = 1781^2.
Crossrefs
Programs
-
PARI
{forstep(n=-344, 10000000, [3, 1], if(issquare(2*n^2+1522*n+579121, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=541, a(2)=761, a(3)=1465, a(4)=1781, a(5)=3805, a(6)=8249.
G.f.: (1-x)*(541+1302*x+2767*x^2+1302*x^3+541*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 761*A001653(k) for k >= 1.
Comments