cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160224 Numerator of Hermite(n, 1/29).

Original entry on oeis.org

1, 2, -1678, -10084, 8447020, 84739192, -70869959816, -996927845296, 832429051182992, 15079519188668960, -12571151938430794976, -278779816630273497152, 232033893531586021651648, 6090959605928612309819264, -5061471196749802724815296640
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 2/29, -1678/841, -10084/24389, 8447020/707281..
		

Crossrefs

Cf. A009973 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(2/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
  • Mathematica
    Table[29^n*HermiteH[n, 2/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 1/29)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(2*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
    

Formula

From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 1/29).
E.g.f.: exp(2*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/29)^(n-2*k)/(k!*(n-2*k)!)). (End)