A160308 Numerator of Hermite(n, 10/31).
1, 20, -1522, -107320, 6629452, 957665200, -44555729720, -11934909680800, 360754594036880, 190726263132718400, -2425807704995582240, -3714274931510759292800, -22999072131198586137920, 85206055577740180606380800, 2278775927824931485369685120
Offset: 0
Examples
Numerators of 1, 20/31, -1522/961, -107320/29791, 6629452/923521, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..368
Crossrefs
Cf. A009975 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(20/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
-
Mathematica
Table[31^n*HermiteH[n, 10/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 10/31)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(20*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
Formula
From G. C. Greubel, Oct 04 2018: (Start)
a(n) = 31^n * Hermite(n, 10/31).
a(n+2) = 20*a(n+1) - 1922*(n+1)*a(n)
E.g.f.: exp(20*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(20/31)^(n-2*k)/(k!*(n-2*k)!)). (End)