cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160372 The 4-tuple (2, ((2*n+1)^2-1)/2, ((2*n+3)^2-1)/2, a(n)), where a(n) = 4*(3 + 20n + 42n^2 + 32n^3 + 8n^4), has Diophantus's property that the product of any two distinct terms plus one is a square.

Original entry on oeis.org

420, 2380, 7812, 19404, 40612, 75660, 129540, 208012, 317604, 465612, 660100, 909900, 1224612, 1614604, 2091012, 2665740, 3351460, 4161612, 5110404, 6212812, 7484580, 8942220, 10603012, 12485004, 14607012, 16988620, 19650180, 22612812, 25898404, 29529612, 33529860
Offset: 1

Views

Author

John W. Layman, May 11 2009

Keywords

Examples

			For n=2, we get (2,12,24,2380), and 2*12+1 = 25 = 5^2, 2*24+1 = 49 = 7^2, 2*2380+1 = 4761 = 69^2, 12*24+1 = 289 = 17^2, 12*2380+1 = 28561 = 169^2, 4*2380+1 = 57121 = 239^2.
		

Crossrefs

Cf. A086302.

Programs

Formula

G.f.: 4*x*(3*x^4-14*x^3+28*x^2+70*x+105)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009 [corrected by R. J. Mathar, Sep 16 2009]
a(n) = 4 * (2*n + 1) * (2*n + 3) * (2*n^2 + 4*n + 1). - Paolo Xausa, Jan 16 2024
From Amiram Eldar, Jan 22 2024: (Start)
Sum_{n>=1} 1/a(n) = -cot(Pi/sqrt(2))*Pi/(8*sqrt(2)) - 5/24.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 - cosec(Pi/sqrt(2))*Pi/(8*sqrt(2)) - 1/24. (End)