cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160375 Given n, let S denote the set of numbers c_1*c_2*...*c_n where 1<=c_1<=c_2<=...<=c_n<=n; a(n) = number of members of S that have a unique representation of this form.

Original entry on oeis.org

1, 3, 10, 16, 61, 81, 337, 477, 601, 901, 4291, 5798, 27314, 33671, 45732, 59397, 299745, 421363, 2090647, 2739022, 4597263, 5401826, 27510715, 23666955
Offset: 1

Views

Author

Mats Granvik, May 11 2009

Keywords

Comments

Number of combinations as in A001700.
From David A. Corneth, Sep 26 2016: (Start)
a(n + 1) / a(n) is fairly large if n + 1 is prime; for the given data, it's at least three. In the other cases it's less than 2.
Let p be a distinct product as described in the name. We look at the factors rather than the result. For n = 4, we see the product p = 1*2*3*3.
Let F(p) be a vector of size n which counts the frequency F_e of each e where 1 <= e <= n. For n = 4 and the product we find (1,1,2,0).
For n = 6, we can put the following restrictions on a vector F(p) = (f_1, f_2, f_3, f_4, f_5, f_6): Trivially, f_e >= 0, f_1+f_2+...+f_6 = 6.
Furthermore,
f_2 * f_3 = 0, as 2*3 = 1*6 and 1<=n=6 and 6<=n=6, so if f_2, f_3 > 0, the value of the product isn't unique, contradiction;
f_2 < 2, 2*2 = 1*4;
f_3 * f_4 = 0 as 3*4 = 2*6. (End)

Examples

			a(3) = 10 because there are 10 numbers that can be written as such a product in exactly one way:
1*1*1 = 1
1*1*2 = 2
1*1*3 = 3
1*2*2 = 4
1*2*3 = 6
2*2*2 = 8
1*3*3 = 9
2*2*3 = 12
2*3*3 = 18
3*3*3 = 27
There are 25 possible products of the numbers 1,2,3,4 (see A110713), but 9 of those products can be attained in multiple ways (e.g., 1*2*2*4 = 1*1*4*4), so a(4) = 25-9 = 16.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Split@ Sort@ Map[Times @@ # &, Union@ Map[Sort, Tuples[Range@ n, n]]], w_ /; Length@ w == 1], {n, 8}] (* Michael De Vlieger, Sep 26 2016 *)

Extensions

a(7)-a(13) from Nathaniel Johnston, Nov 29 2010
a(14)-a(24) from Gerhard Kirchner, Aug 30 2016
Definition edited by N. J. A. Sloane, Sep 27 2016