A160381 Number of 1's in base-4 representation of n.
0, 1, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 1, 2, 3, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 1, 2, 3, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 1, 2, 1, 1, 2, 3, 2, 2, 1
Offset: 0
Links
- F. T. Adams-Watters, F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6
Programs
-
Mathematica
DigitCount[Range[0,120],4,1] (* Harvey P. Dale, Aug 28 2018 *)
Formula
Recurrence relation: a(0) = 0, a(4m+1) = 1+a(m), a(4m) = a(4m+2) = a(4m+3) = a(m).
Generating function: (1/(1-z))*Sum_{m>=0} (z^(4^m)*(1 - z^(4^m))/(1 - z^(4^(m+1)))).
Morphism: 0, j -> j,j+1,j,j; e.g., 0 -> 0100 -> 0100121101000100 -> ...