A160383 Number of 3's in base-4 representation of n.
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 0
Links
- F. T. Adams-Watters and F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6.
Programs
-
PARI
a(n) = #select(x->(x==3), digits(n, 4)); \\ Michel Marcus, Mar 24 2020
Formula
Recurrence relation: a(0) = 0, a(4m+3) = 1+a(m), a(4m) = a(4m+1) = a(4m+2) = a(m).
G.f.: (1/(1-z))*Sum_{m>=0} (z^(3*4^m)*(1 - z^(4^m))/(1 - z^(4^(m+1)))).
Morphism: 0, j -> j,j,j,j+1; e.g., 0 -> 0001 -> 0001000100011112 -> ...