cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160383 Number of 3's in base-4 representation of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Frank Ruskey, Jun 05 2009

Keywords

Crossrefs

Cf. A007090 (base 4), A160380 (0's), A160381 (1's), A160382 (2's).
Cf. A283316 (mod 2).

Programs

  • PARI
    a(n) = #select(x->(x==3), digits(n, 4)); \\ Michel Marcus, Mar 24 2020

Formula

Recurrence relation: a(0) = 0, a(4m+3) = 1+a(m), a(4m) = a(4m+1) = a(4m+2) = a(m).
G.f.: (1/(1-z))*Sum_{m>=0} (z^(3*4^m)*(1 - z^(4^m))/(1 - z^(4^(m+1)))).
Morphism: 0, j -> j,j,j,j+1; e.g., 0 -> 0001 -> 0001000100011112 -> ...