A160384 Number of nonzero digits in the base-3 representation of n.
0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 3, 3, 1, 2, 2, 2, 3, 3, 2, 3, 3, 1, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 4, 4, 3, 4, 4, 2, 3, 3, 3, 4, 4, 3, 4, 4, 1, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 4, 4, 3, 4, 4, 2, 3, 3, 3, 4, 4, 3, 4, 4, 1, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 4, 4, 3, 4, 4, 2, 3, 3, 3, 4, 4
Offset: 0
Links
- F. T. Adams-Watters, F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6
Programs
-
Mathematica
Join[{0},Table[IntegerLength[n,3]-DigitCount[n,3,0],{n,110}]] (* Harvey P. Dale, Jun 21 2015 *)
-
PARI
a(n)=my(d=digits(n,3)); sum(i=1,#d,!!d[i]) \\ Charles R Greathouse IV, Jan 13 2014
Formula
Recurrence relation: a(0) = 0, a(3m) = a(m), a(3m+1) = a(3m+2) = 1+a(m).
G.f.: (1/(1-z))*Sum_{m>=1} (z^(3^(m-1)) - z^(3^m))/(1 - z^(3^m)).
Morphism: 0, j -> j,j+1,j+1; e.g., 0 -> 011 -> 011122122 -> ...