A160385 Number of nonzero digits in base-4 representation of n.
0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- F. T. Adams-Watters, F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6
Programs
-
Haskell
import Data.List (unfoldr) a160385 = sum . map (signum . (`mod` 4)) . unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4)) -- Reinhard Zumkeller, Apr 22 2011
Formula
Recurrence relation: a(0) = 0, a(4m) = a(m), a(4m+1) = a(4m+2) = a(4m+3) = 1+a(m).
Generating function: (1/(1-z)) * Sum_{m>=1} (z^(4^(m-1) - z^(4^m))/(1 - z^(4^m))).
Morphism: 0, j -> j,j+1,j+1,j+1; e.g., 0 -> 0111 -> 0111122212221222 -> ...