A160410 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).
0, 4, 16, 28, 64, 76, 112, 148, 256, 268, 304, 340, 448, 484, 592, 700, 1024, 1036, 1072, 1108, 1216, 1252, 1360, 1468, 1792, 1828, 1936, 2044, 2368, 2476, 2800, 3124, 4096, 4108, 4144, 4180, 4288, 4324, 4432, 4540, 4864, 4900, 5008, 5116, 5440, 5548, 5872, 6196
Offset: 0
Examples
From _Omar E. Pol_, Sep 24 2015: (Start) With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins: 4; 16; 28, 64; 76, 112, 148, 256; 268, 304, 340, 448, 484, 592, 700, 1024; ... Right border gives the elements of A000302 greater than 1. This triangle T(n,k) shares with the triangle A256534 the terms of the column k, if k is a power of 2, for example, both triangles share the following terms: 4, 16, 28, 64, 76, 112, 256, 268, 304, 448, 1024, etc. . Illustration of initial terms, for n = 1..10: . _ _ _ _ _ _ _ _ . | _ _ | | _ _ | . | | _|_|_ _ _ _ _ _ _ _ _ _ _ _|_|_ | | . | |_| _ _ _ _ _ _ _ _ |_| | . |_ _| | _|_ _|_ | | _|_ _|_ | |_ _| . | |_| _ _ |_| |_| _ _ |_| | . | | | _|_|_ _ _ _|_|_ | | | . | _| |_| _ _ _ _ |_| |_ | . | | |_ _| | _|_ _|_ | |_ _| | | . | |_ _| | |_| _ _ |_| | |_ _| | . | | | | | | | | . | _ _ | _| |_ _| |_ | _ _ | . | | _|_| | |_ _ _ _| | |_|_ | | . | |_| _| |_ _| |_ _| |_ |_| | . | | | |_ _ _ _ _ _ _ _| | | | . | _| |_ _| |_ _| |_ _| |_ | . _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _ . | _| |_ _| |_ _| |_ _| |_ _| |_ | . | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | . | |_ _| | | |_ _| | . |_ _ _ _| |_ _ _ _| . After 10 generations there are 304 ON cells, so a(10) = 304. (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1000
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.],
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 31.
- Omar E. Pol, Illustration of initial terms (2009)
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
Mathematica
RasterGraphics[state_?MatrixQ,colors_Integer:2,opts___]:= Graphics[Raster[Reverse[1-state/(colors -1)]], AspectRatio ->(AspectRatio/.{opts}/.AspectRatio ->Automatic), Frame ->True, FrameTicks ->None, GridLines ->None]; rule=1340761804646523638425234105559798690663900360577570370705802859623\ 705267234688669629039040624964794287326910250673678735142700520276191850\ 5902735959769690 Show[GraphicsArray[Map[RasterGraphics,CellularAutomaton[{rule, {2, {{4,2,1}, {32,16,8}, {256,128,64}}}, {1,1}}, {{{1,1}, {1,1}}, 0}, 9,-10]]]]; ca=CellularAutomaton[{rule,{2,{{4,2,1},{32,16,8},{256,128,64}}},{1, 1}},{{{1,1},{1,1}},0},99,-100]; Table[Total[ca[[i]],2],{i,1,Length[ca]}] (* John W. Layman, Sep 01 2009; Sep 02 2009 *) a[n_] := 4*Sum[3^DigitCount[k, 2, 1], {k, 0, n-1}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 17 2017, after N. J. A. Sloane *)
-
PARI
A160410(n)=sum(i=0,n-1,3^norml2(binary(i)))<<2 \\ M. F. Hasler, Dec 04 2012
Formula
Equals 4*A130665. This provides an explicit formula for a(n). - N. J. A. Sloane, Jul 13 2009
a(2^k) = (2*(2^k))^2 for k>=0.
Extensions
Edited by David Applegate and N. J. A. Sloane, Jul 13 2009
Comments