A160455 Number of triangles that can be built from rods with lengths 1,2,...,n by using and concatenating all rods.
0, 2, 7, 12, 16, 27, 48, 70, 91, 127, 184, 243, 300, 385, 507, 631, 752, 919, 1141, 1365, 1587, 1875, 2241, 2611, 2977, 3434, 3997, 4563, 5125, 5808, 6627, 7450, 8269, 9241, 10384, 11532, 12675, 14008, 15552, 17101, 18644, 20419, 22447
Offset: 3
Examples
For n=3, only one integer-sided triangle with perimeter 1+2+3=6 exists, namely (2,2,2). This cannot be built from rods of length 1,2 and 3. Therefore a(3)=0. For n=4, two triangles with perimeter 1+2+3+4=10 exist: (4,4,2) and (4,3,3); both can be built from the available rods: (4,1+3,2) and (4,3,1+2). Therefore a(4)=2.
Links
- H. v. Eitzen, Table of n, a(n) for n=3..10000
- "AI", (Sci.math thread that inspired investigating the sequence)
- H. v. Eitzen, How to Build Triangles from Integers
Crossrefs
A002623 is a similar problem where one rod per edge is to be used.
Formula
If n<=2, a(n)=0 trivially because three edges need at least three rods.
If n>=4, then a(n) = A005044(n*(n+1)/2), i.e. for n big enough all triangles of suitable perimeter can be obtained.
Conjectures from Colin Barker, May 12 2019: (Start)
G.f.: x^4*(2 - x + 2*x^2 - 3*x^3 + 6*x^4 - 5*x^5 + 8*x^6 - 9*x^7 + 11*x^8 - 11*x^9 + 11*x^10 - 10*x^11 + 10*x^12 - 8*x^13 + 5*x^14 - 3*x^15 + x^16) / ((1 - x)^5*(1 + x^2)^3*(1 + x + x^2)*(1 + x^4)).
a(n) = 4*a(n-1) - 9*a(n-2) + 17*a(n-3) - 27*a(n-4) + 37*a(n-5) - 47*a(n-6) + 55*a(n-7) - 59*a(n-8) + 59*a(n-9) - 55*a(n-10) + 47*a(n-11) - 37*a(n-12) + 27*a(n-13) - 17*a(n-14) + 9*a(n-15) - 4*a(n-16) + a(n-17) for n>20.
(End)
Comments