cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160462 Coefficients in the expansion of C^2/B^3, in Watson's notation of page 106.

Original entry on oeis.org

1, 3, 9, 22, 51, 106, 215, 411, 766, 1377, 2423, 4154, 7001, 11567, 18834, 30195, 47809, 74735, 115585, 176847, 268064, 402598, 599695, 886116, 1299808, 1893115, 2739248, 3938491, 5629407, 8000431, 11309295, 15904003, 22256183, 30998479, 42981170, 59337604
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			x^7+3*x^31+9*x^55+22*x^79+51*x^103+106*x^127+215*x^151+...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), this sequence (k=2), A160463 (k=3), A160506 (k=4), A071734 (k=5), A160460 (k=6), A160521 (k=7), A278555 (k=12), A278556 (k=18), A278557 (k=24), A278558 (k=30).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^2/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)

Formula

See Maple code in A160458 for formula.
a(n) ~ sqrt(13/15) * exp(Pi*sqrt(26*n/15)) / (20*n). - Vaclav Kotesovec, Nov 28 2016