cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160478 The p(n) sequence that is associated with the Zeta triangle A160474.

Original entry on oeis.org

9, 450, 99225, 3572100, 1080560250, 547844046750, 28761812454375, 66497310394515000, 324074642207668852500, 170139187159026147562500, 495019965039186576333093750, 74252994755877986449964062500
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Crossrefs

Cf. A160474 and A160476.

Programs

  • Maple
    nmax:=15: with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: Omega(0) := 1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n) := 2^(2*n-1)*Omega(n) end do: for n from 2 to nmax do Zc(n-1) := d(n-1)*2/((2*n-1)*(n-1)) end do: c(1) := denom(Zc(1)): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, denom(Zc(n+1))): p(n+1) := c(n) end do: seq(p(n), n=2..nmax);
    #  (program edited, Johannes W. Meijer, Sep 20 2012)

Formula

a(n) = 3*2^(3-2*n)*(2*n-1)!*A160476(n), for n = 2, 3, .. , with A160476 the first right hand column of the Zeta triangle.