A160480 The Beta triangle read by rows.
-1, -11, 1, -299, 36, -1, -15371, 2063, -85, 1, -1285371, 182474, -8948, 166, -1, -159158691, 23364725, -1265182, 29034, -287, 1, -27376820379, 4107797216, -237180483, 6171928, -77537, 456, -1
Offset: 2
Examples
The first few rows of the triangle BETA(n,m) with n=2,3,... and m=1,2,... are [ -1], [ -11, 1], [ -299, 36, -1], [ -15371, 2063 -85, 1]. The first few BETA(z;n) polynomials are BETA(z;n=2) = -1, BETA(z;n=3) = -11 + z^2, BETA(z;n=4) = -299 + 36*z^2 - z^4. The first few CFN1(z;n) polynomials are CFN2(z;n=2) = (z^2 - 1), CFN2(z;n=3) = (z^4 - 10*z^2 + 9), CFN2(z;n=4) = (z^6 - 35*z^4 + 259*z^2 - 225). The first few generating functions GK(z;n) are GK(z;n=2) = ((-1)*(z^2-1)*GK(z,n=1) + (-1))/2, GK(z;n=3) = ((z^4 - 10*z^2 + 9)*GK(z,n=1)+ (-11 + z^2))/24, GK(z;n=4) = ((-1)*(z^6 - 35*z^4 + 259*z^2 - 225)*GK(z,n=1) + (-299 + 36*z^2 - z^4))/720.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- J. M. Amigo, Relations among Sums of Reciprocal Powers Part II, International Journal of Mathematics and Mathematical Sciences , Volume 2008 (2008), pp. 1-20.
- Johannes W. Meijer, The zeros of the Eta, Zeta, Beta and Lambda polynomials, jpg and pdf, Mar 03 2013.
Crossrefs
Programs
-
Maple
nmax := 8; mmax := nmax: for n from 1 to nmax do BETA(n, n) := 0 end do: m := 1: for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - (2*n-4)! od: for m from 2 to mmax do for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - BETA(n-1, m-1) od: od: seq(seq(BETA(n, m), m=1..n-1), n= 2..nmax); # End first program nmax1 := 25; m := 1; BS1row := 1-2*m; for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: mmax1 := nmax1: for m1 from 1 to mmax1 do BS1[1-2*m1, 1] := euler(2*m1-2) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do BS1[1-2*m1, n] := (-1)^(n+1)*sum((-1)^(k1+1)*cfn2(n-1, k1-1) * BS1[2*k1-2*n-2*m1+1, 1], k1 =1..n)/(2*n-2)! od: od: seq(BS1[1-2*m, n], n=1..nmax1-m+1); # End second program
-
Mathematica
BETA[2, 1] = -1; BETA[n_, 1] := BETA[n, 1] = (2*n - 3)^2*BETA[n - 1, 1] - (2*n - 4)!; BETA[n_ /; n > 2, m_ /; m > 0] /; 1 <= m <= n := BETA[n, m] = (2*n - 3)^2*BETA[n - 1, m] - BETA[n - 1, m - 1]; BETA[, ] = 0; Table[BETA[n, m], {n, 2, 9}, {m, 1, n - 1}] // Flatten (* Jean-François Alcover, Dec 13 2017 *)
Formula
We discovered a relation between the Beta triangle coefficients BETA(n,m) = (2*n-3)^2* BETA(n-1,m)- BETA(n-1,m-1) for n = 3, 4, ... and m = 2, 3, ... with BETA(n,m=1) = (2*n-3)^2*BETA(n-1,m=1) - (2*n-4)! for n = 2, 3, ... and BETA(n,n) = 0 for n = 1, 2, ... .
The generating functions GK(z;n) of the coefficients in the matrix columns are defined by
GK(z;n) = sum(BS1[2*m-1,n]*z^(2*m-2), m=1..infinity) with n = 1, 2, ... .
This definition leads to GK(z;n=1) = 1/(z*cos(Pi*z/2))*int(sin(z*t)/sin(t),t=0..Pi/2).
Furthermore we discovered that GK(z;n) = GK(z;n-1)*((2*n-3)/(2*n-2)-z^2/((2*n-2)*(2*n-3)))-1/((2*n-2)*(2*n-3)) for n = 2, 3, ... .
We found the following general expression for the GK(z;n) polynomials, for n = 2, 3, ...,
GK(z;n) = ((-1)^(n+1)*CFN2(z;n)*GK(z;n=1) + BETA(z;n))/p(n) with p(n) = (2*n-2)!.
Comments