A160499 Number of quartic primitive Dirichlet characters modulo n.
1, 0, 1, 1, 3, 0, 1, 2, 0, 0, 1, 1, 3, 0, 3, 4, 3, 0, 1, 3, 1, 0, 1, 2, 0, 0, 0, 1, 3, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 6, 3, 0, 1, 1, 0, 0, 1, 4, 0, 0, 3, 3, 3, 0, 3, 2, 1, 0, 1, 3, 3, 0, 0, 0, 9, 0, 1, 3, 1, 0, 1, 0, 3, 0, 0, 1, 1, 0, 1, 12, 0
Offset: 1
Examples
From _Jianing Song_, Mar 02 2019: (Start) For n = 5, the 3 quartic primitive Dirichlet characters modulo n are [0, 1, -1, -1, 1], [0, 1, i, -i, -1] and [0, 1, -i, i, -1], so a(5) = 3. For n = 16, the 4 quartic primitive Dirichlet characters modulo n are [0, 1, 0, i, 0, i, 0, 1, 0, -1, 0, -i, 0, -i, 0, -1], [0, 1, 0, -i, 0, -i, 0, 1, 0, -1, 0, i, 0, i, 0, -1], [0, 1, 0, i, 0, -i, 0, -1, 0, -1, 0, -i, 0, i, 0, 1] and [0, 1, 0, -i, 0, i, 0, -1, 0, -1, 0, i, 0, -i, 0, 1], so a(16) = 4. (End)
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Steven R. Finch, Cubic and quartic characters.
- Steven R. Finch, Cubic and quartic characters.
- Steven R. Finch, Quartic and Octic Characters Modulo n, arXiv:0907.4894 [math.NT], 2016.
Crossrefs
Programs
-
Mathematica
f[n_] := Sum[If[Mod[k^4 - 1, n] == 0, 1, 0], {k, 1, n}]; a[n_] := Sum[ MoebiusMu[n/d]*f[d], {d, Divisors[n]}]; Table[a[n], {n, 2, 81}] (* Jean-François Alcover, Jun 19 2013 *) f[2, e_] := Which[e == 1, 0, e == 2, 1, e == 3, 2, e == 4, 4, e >= 5, 0]; f[p_, 1] := If[Mod[p, 4] == 1, 3, 1]; f[p_, e_] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
-
PARI
a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^4-1)%d, 0, 1)), 0)) \\ Steven Finch, Jun 09 2009
Formula
Multiplicative with a(4) = 1, a(8) = 2, a(16) = 4, a(2^e) = 0 for e = 1 or e >= 5; for odd primes p, a(p) = 3 if p == 1 (mod 4) and 1 if p == 3 (mod 4), a(p^e) = 0 for e >= 2. - Jianing Song, Mar 02 2019
Sum_{k=1..n} a(k) ~ c * n * log(n), where c = (7/(16*Pi*K^2)) * Product_{primes p == 1 (mod 4)} (1 - (5*p-3)/(p^2*(p+1))) = 0.1908767211685284480112237..., and K is the Landau-Ramanujan constant (A064533). - Amiram Eldar, Sep 16 2020
Extensions
a(1) = 1 prepended by Jianing Song, Feb 27 2019
Comments