cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160539 Coefficients in the expansion of C/B^7, in Watson's notation of page 118.

Original entry on oeis.org

1, 7, 35, 140, 490, 1547, 4522, 12404, 32298, 80430, 192759, 446656, 1004598, 2199953, 4703104, 9836820, 20167210, 40593651, 80335164, 156503088, 300457906, 568992893, 1063818868, 1965178600, 3589328246, 6485976525, 11602141453, 20555544212, 36087448852
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Comments

Watson's C and B are (essentially) defined as C = prod(n>=1, 1-q^(7*n)) and B = prod(n>=1, 1-q^n). - Joerg Arndt, Jul 30 2011
From Petros Hadjicostas, Sep 23 2019: (Start)
In Section 5 of his paper, p. 118, Watson defines A = x^(1/7)*f(-x^(24/7)), B = x*f(-x^24), and C = x^7*f(-x^168), where f(-x^2) = Product_{n >= 1} (1 - x^(2*n)). Note that in different sections of the paper, the definitions of A, B, and C change.
Letting q = x^24, we get B = q^(1/24) * Product_{n >= 1} (1 - q^n), C = q^(7/24) * Product_{n >= 1} (1 - q^(7*n)), and C/B^7 = Product_{n >= 1} (1 - q^(7*n))/(1 -q^n)^7. This is the reason Joerg Arndt above omits the factor q^(1/24) in the definition of B and the factor q^(7/24) in the definition of C.
(End)

Examples

			1 + 7*x^24 + 35*x^48 + 140*x^72 + 490*x^96 + 1547*x^120 + 4522*x^144 + ... = 1 + 7*q + 35*q^2 + 140*q^3 + 490*q^4 + 1547*q^5 + ... with q = x^24.
		

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))/(1 - x^k)^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
  • PARI
    N=66; x='x+O('x^N);
    gf=eta(x^7)/eta(x)^7;
    Vec(gf) /* Joerg Arndt, Jul 30 2011 */

Formula

G.f.: E7/E1^7 where E1 = P(q), E7 = P(q^7), and P(q) = prod(n>=1, 1-q^n). - Joerg Arndt, Jul 30 2011
G.f.: exp(sum(n>=1, (sigma(7*n)-sigma(n))*x^n/n ) ). - Joerg Arndt, Jul 30 2011
See also Maple code in A160525 for formula.
a(n) ~ 2^(5/4) * exp(4*Pi*sqrt(2*n/7)) / (7^(9/4) * n^(9/4)). - Vaclav Kotesovec, Nov 10 2016