A160539 Coefficients in the expansion of C/B^7, in Watson's notation of page 118.
1, 7, 35, 140, 490, 1547, 4522, 12404, 32298, 80430, 192759, 446656, 1004598, 2199953, 4703104, 9836820, 20167210, 40593651, 80335164, 156503088, 300457906, 568992893, 1063818868, 1965178600, 3589328246, 6485976525, 11602141453, 20555544212, 36087448852
Offset: 0
Keywords
Examples
1 + 7*x^24 + 35*x^48 + 140*x^72 + 490*x^96 + 1547*x^120 + 4522*x^144 + ... = 1 + 7*q + 35*q^2 + 140*q^3 + 490*q^4 + 1547*q^5 + ... with q = x^24.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128; see p. 118 (def. of A, B, C) and p. 125 (expansion of C/B^7).
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))/(1 - x^k)^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
-
PARI
N=66; x='x+O('x^N); gf=eta(x^7)/eta(x)^7; Vec(gf) /* Joerg Arndt, Jul 30 2011 */
Formula
G.f.: E7/E1^7 where E1 = P(q), E7 = P(q^7), and P(q) = prod(n>=1, 1-q^n). - Joerg Arndt, Jul 30 2011
G.f.: exp(sum(n>=1, (sigma(7*n)-sigma(n))*x^n/n ) ). - Joerg Arndt, Jul 30 2011
See also Maple code in A160525 for formula.
a(n) ~ 2^(5/4) * exp(4*Pi*sqrt(2*n/7)) / (7^(9/4) * n^(9/4)). - Vaclav Kotesovec, Nov 10 2016
Comments