cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160549 Omit first term from A160539 and divide by 7.

Original entry on oeis.org

0, 1, 5, 20, 70, 221, 646, 1772, 4614, 11490, 27537, 63808, 143514, 314279, 671872, 1405260, 2881030, 5799093, 11476452, 22357584, 42922558, 81284699, 151974124, 280739800, 512761178, 926568075, 1657448779, 2936506316, 5155349836, 8972488674, 15487146900
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Comments

These are Watson's coefficients beta'_n on page 125.

Examples

			G.f. = x + 5*x^2 + 20*x^3 + 70*x^4 + 221*x^5 + 646*x^6 + ...
		

Crossrefs

Cf. A160539.
Cf. Expansion of ((Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k) - 1)/k in powers of x: A014968 (k=2), A277968 (k=3), A277974 (k=5), this sequence (k=7), A277912 (k=11).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[(Product[(1 - x^(7*j))/(1 - x^j)^7, {j, 1, nmax}] - 1)/7, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
  • PARI
    x='x+O('x^66); concat([0],Vec(eta(x^7)/eta(x)^7-1)/7) \\ Joerg Arndt, Nov 27 2016

Formula

From Seiichi Manyama, Nov 07 2016: (Start)
a(n) = A160539(n)/7, n > 0.
G.f.: ((Product_{n>=1} (1 - x^(7*n))/(1 - x^n)^7) - 1)/7. (End)
a(n) ~ 2^(5/4) * exp(4*Pi*sqrt(2*n/7)) / (7^(13/4) * n^(9/4)). - Vaclav Kotesovec, Nov 10 2016

Extensions

Typo in definition corrected by Seiichi Manyama, Nov 07 2016