A160549 Omit first term from A160539 and divide by 7.
0, 1, 5, 20, 70, 221, 646, 1772, 4614, 11490, 27537, 63808, 143514, 314279, 671872, 1405260, 2881030, 5799093, 11476452, 22357584, 42922558, 81284699, 151974124, 280739800, 512761178, 926568075, 1657448779, 2936506316, 5155349836, 8972488674, 15487146900
Offset: 0
Keywords
Examples
G.f. = x + 5*x^2 + 20*x^3 + 70*x^4 + 221*x^5 + 646*x^6 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128; see p. 125.
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[(Product[(1 - x^(7*j))/(1 - x^j)^7, {j, 1, nmax}] - 1)/7, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
-
PARI
x='x+O('x^66); concat([0],Vec(eta(x^7)/eta(x)^7-1)/7) \\ Joerg Arndt, Nov 27 2016
Formula
From Seiichi Manyama, Nov 07 2016: (Start)
a(n) = A160539(n)/7, n > 0.
G.f.: ((Product_{n>=1} (1 - x^(7*n))/(1 - x^n)^7) - 1)/7. (End)
a(n) ~ 2^(5/4) * exp(4*Pi*sqrt(2*n/7)) / (7^(13/4) * n^(9/4)). - Vaclav Kotesovec, Nov 10 2016
Extensions
Typo in definition corrected by Seiichi Manyama, Nov 07 2016
Comments