cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160552 a(0)=0, a(1)=1; a(2^i+j) = 2*a(j) + a(j+1) for 0 <= j < 2^i.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 5, 7, 1, 3, 5, 7, 5, 11, 17, 15, 1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 19, 21, 39, 49, 31, 1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 19, 21, 39, 49, 31, 5, 11, 17, 19, 21, 39, 49, 35, 21, 39, 53, 59, 81, 127, 129, 63, 1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 19, 21, 39, 49, 31
Offset: 0

Views

Author

David Applegate, May 18 2009

Keywords

Comments

This recurrence is patterned after the one for A152980, but without the special cases.
Sequence viewed as triangle:
0,
1,
1, 3,
1, 3, 5, 7,
1, 3, 5, 7, 5, 11, 17, 15,
1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 19, 21, 39, 49, 31.
The rows converge to A151548.
Also the sum of the terms in the k-th row (k >= 1) is 4^(k-1). Proof by induction. - N. J. A. Sloane, Jan 21 2010
If this sequence [1, 1, 3, 1, 3, 5, 7, 1, 3, 5, 7, 5, 11, 17, 15, ...] is convolved with [1, 2, 2, 2, 2, 2, 2, ...] we obtain A139250, the toothpick sequence. Example: A139250(5) = 15 = (1, 2, 2, 2, 2) * (3, 1, 3, 1, 1). - Gary W. Adamson, May 19 2009
Starting with 1 and convolved with [1, 2, 0, 0, 0, ...] = A151548. - Gary W. Adamson, Jun 04 2009
Refer to A162956 for the analogous triangle using N=3. - Gary W. Adamson, Jul 20 2009
It appears that the sums of two successive terms give the positive terms of A139251. - Omar E. Pol, Feb 18 2015

Examples

			a(2) = a(2^1+0) = 2*a(0) + a(1) = 1, a(3) = a(2^1+1) = 2*a(1) + a(2) = 3*a(2^i) = 2*a(0) + a(1) = 1.
		

Crossrefs

For the recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D) see: (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.

Programs

  • Maple
    S:=proc(n) option remember; local i,j; if n <= 1 then RETURN(n); fi; i:=floor(log(n)/log(2)); j:=n-2^i; 2*S(j)+S(j+1); end; # N. J. A. Sloane, May 18 2009
    H := x*(1+2*x)/(1+x) + (4*x^2/(1+2*x))*(mul(1+x^(2^k-1)+2*x^(2^k),k=1..20)-1); series(H,x,120); # N. J. A. Sloane, May 23 2009
  • Mathematica
    Nest[Join[#, 2 # + Append[Rest@#, 1]] &, {0}, 7] (* Ivan Neretin, Feb 09 2017 *)

Formula

G.f.: x*(1+2*x)/(1+x) + (4*x^2/(1+2*x))*(-1 + Product_{k>=1} (1 + x^(2^k-1) + 2*x^(2^k))). - N. J. A. Sloane, May 23 2009, based on Gary W. Adamson's comment above and the known g.f. for A139250.
It appears that a(n) = A169708(n)/4, n >= 1. - Omar E. Pol, Feb 15 2015
It appears that a(n) = A139251(n) - a(n-1), n >= 1. - Omar E. Pol, Feb 18 2015