cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160565 Diagonal sums of number triangle [k<=n]*C(n,2n-2k)2^(n-k)A000108(n-k).

Original entry on oeis.org

1, 0, 1, 2, 1, 6, 9, 12, 41, 60, 121, 310, 505, 1162, 2577, 4760, 11089, 23256, 47089, 107274, 223345, 476366, 1061017, 2237796, 4888313, 10745748, 23048169, 50792638, 111180265, 241786898, 534219297
Offset: 0

Views

Author

Paul Barry, May 19 2009

Keywords

Comments

Hankel transform is A160566(n+1).
a(0)=1 followed by A025252. [From R. J. Mathar, May 20 2009]

Crossrefs

Cf.: A025250.

Formula

G.f.: (1-x^2-sqrt(1-2x^2-8x^3+x^4))/(4x^3);
G.f.: 1/(1-x^2-2*x^3/(1-x^2-2*x^3/(1-x^2-2*x^3/(1-x^2-2*x^3/(1-... (continued fraction).
a(n)=sum{k=0..floor(n/2), C(n-k,2n-4k)*2^(n-2k)*A000108(n-2k)};
a(n)=sum{k=0..n, C(n-k/2,2(n-k))*2^(n-k)*A000108(n-k)*(1+(-1)^k)/2};
a(n)=sum{k=0..n, C((n+k)/2,2k)*2^k*A000108(k)(1+(-1)^(n-k))/2}.
G.f.: (1/(1-x^2))c(2x^3/(1-x^2)^2) where c(x) is the g.f. of A000108. [From Paul Barry, May 20 2009]