cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A025252 a(n) = (1/2)*s(n+3), where s = A025251.

Original entry on oeis.org

0, 1, 2, 1, 6, 9, 12, 41, 60, 121, 310, 505, 1162, 2577, 4760, 11089, 23256, 47089, 107274, 223345, 476366, 1061017, 2237796, 4888313, 10745748, 23048169, 50792638, 111180265, 241786898, 534219297, 1170798128, 2570337441, 5684509232, 12503504353, 27613172114
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x^2 + 2*x^3 + x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 41*x^8 + 60*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1 - x^2 - 4 x^3 - Sqrt[1 - 2 x^2 - 8 x^3 + x^4]) / (4 x^3), {x, 0, n}]; (* Michael Somos, Feb 08 2015 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( (-sqrt(1 - 2*x^2 - 8*x^3 + x^4 + x^4*O(x^n))) / 4, n+3))};

Formula

G.f.: (1 - x^2 - 4*x^3 - sqrt(1 - 2*x^2 - 8*x^3 + x^4)) / (4*x^3). - Michael Somos, Jun 08 2000
(n+3)*a(n) +(n+2)*a(n-1) -2*n*a(n-2) +2*(-5*n+7)*a(n-3) +(-7*n+17)*a(n-4) +(n-4)*a(n-5)=0. - R. J. Mathar, Dec 15 2013
0 = a(n)*(+a(n+1) - 20*a(n+2) - 8*a(n+3) + 7*a(n+5)) +a(n+1)*(+4*a(n+1) + 68*a(n+2) + 40*a(n+3) - 5*a(n+4) - 44*a(n+5)) + a(n+2)*(-8*a(n+2) + 4*a(n+3) + 28*a(n+4) - 8*a(n+5)) + a(n+3)*(+4*a(n+4)) + a(n+4)*(+a(n+5)) for all n>0. - Michael Somos, Feb 08 2015
a(n) = A160565(n) for all n>0. - Michael Somos, Feb 08 2015

A160567 a(n)=4*(a(n-1)a(n-3)-a(n-2)^2)/a(n-4), a(1)=a(2)=a(3)=1, a(4)=-4.

Original entry on oeis.org

1, 1, 1, -4, -20, -144, 704, 34816, 1101824, 12124160, -4499439616, -586464362496, -99309307559936, 33947352788107264, 26466630265219317760, 25787111566764821970944, -7045529183328701486465024
Offset: 0

Views

Author

Paul Barry, May 19 2009

Keywords

Comments

a(n+1) is the Hankel transform of A160565.

Crossrefs

Cf. A050512.

Programs

  • Maple
    A160567 := proc(n)
        option remember;
        if n < 5 then
            op(n,[1,1,1,-4]);
        else
            4*(procname(n-1)*procname(n-3)-procname(n-2)^2)/procname(n-4) ;
        end if;
    end proc: # R. J. Mathar, Feb 25 2015

A160568 Diagonal sums of number triangle [k<=n]*C(n,2n-2k)3^(n-k)A000108(n-k).

Original entry on oeis.org

1, 0, 1, 3, 1, 9, 19, 18, 91, 165, 271, 990, 1765, 3843, 11467, 21630, 53299, 140724, 287119, 736101, 1818235, 3982044, 10225117, 24521409, 56584243, 143641017, 341948179, 816095982, 2045559205, 4888806237, 11897144767, 29540684052
Offset: 0

Views

Author

Paul Barry, May 19 2009

Keywords

Comments

Hankel transform is A160569(n+1).

Crossrefs

Formula

G.f.: (1-x^2-sqrt(1-2x^2-12x^3+x^4))/(6*x^3);
G.f.: 1/(1-x^2-3*x^3/(1-x^2-3*x^3/(1-x^2-3*x^3/(1-x^2-3*x^3/(1-... (continued fraction).
a(n)=sum{k=0..floor(n/2), C(n-k,2n-4k)*3^(n-2k)*A000108(n-2k)};
a(n)=sum{k=0..n, C(n-k/2,2(n-k))*3^(n-k)*A000108(n-k)*(1+(-1)^k)/2};
a(n)=sum{k=0..n, C((n+k)/2,2k)*3^k*A000108(k)(1+(-1)^(n-k))/2}.
Showing 1-3 of 3 results.