cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160700 a(n) = if n<16 then n else a(floor(n/16)) XOR (n mod 16).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13, 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12, 4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11, 5, 4, 7, 6, 1, 0, 3, 2, 13
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 01 2009

Keywords

Comments

A very simple hash function for the nonnegative integers.
a(A000079(n))=A133145(n); a(A000302(n))=A010685(n); a(A001025(n))=A161452(n); a(A161440(n))=0; a(A161441(n))=1; a(A161442(n))=2; a(A161443(n))=3; a(A161444(n))=4; a(A161445(n))=5; a(A161446(n))=6; a(A161447(n))=7; a(A161448(n))=8; a(A161449(n))=9; a(A161450(n))=10; a(A161451(n))=11; a(A161452(n))=12; a(A161453(n))=13; a(A161454(n))=14; a(A161455(n))=15. - Reinhard Zumkeller, Jun 10 2009

Programs

  • Haskell
    import Data.Bits (xor)
    a160700 n = a160700_list !! n
    a160700_list = [0..15] ++ map f [16..] where
       f x = a160700 x' `xor` m :: Int where (x', m) = divMod x 16
    -- Reinhard Zumkeller, Nov 07 2012
    
  • Maple
    read("transforms") ;
    A160700 := proc(n)
        if n < 16 then
            n;
        else
            XORnos(procname(floor(n/16)),modp(n,16))
        end if;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    a[n_] := a[n] = If[n < 16, n, a[Floor[n/16]] ~BitXor~ Mod[n, 16]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 25 2018 *)
  • Maxima
    load(functs)$
    A160700(n):=if n<16 then n else logxor(floor(n/16),mod(n,16))$
    makelist(A160700(n),n,0,60); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=my(t=n%16); while(n>15, n>>=4; t=bitxor(t, n%16)); t \\ Charles R Greathouse IV, Jan 25 2018