A160702 Sequence such that the Hankel transform of a(n+1) satisfies a generalized Somos-4 recurrence.
1, 1, 1, 5, 19, 79, 333, 1441, 6351, 28451, 129185, 593373, 2752427, 12876343, 60684533, 287857209, 1373286375, 6584979659, 31719337353, 153416338549, 744777567043, 3627787084319
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- Gouce Xin, Proof of the Somos-4 Hankel determinants conjecture, Advances in Applied Mathematics, Volume 42, Issue 2, February 2009, Pages 152-156.
Programs
-
Mathematica
CoefficientList[Series[1/4+(1-Sqrt[16*x^3+x^2-6*x+1])/(4*x),{x,0,20}],x] (* Vaclav Kotesovec, Nov 20 2012 *)
Formula
a(n) = if(n=0,1,if(n=1,1,if(n=2,1,a(n-1)+2*sum{k=0..n-2, a(k)*a(n-1-k)})))
Recurrence: (n+1)*a(n) = 3*(2*n-1)*a(n-1) - (n-2)*a(n-2) - 8*(2*n-7)*a(n-3). - Vaclav Kotesovec, Nov 20 2012
G.f.: 1/4+(1-sqrt(16*x^3+x^2-6*x+1))/(4*x). - Vaclav Kotesovec, Nov 20 2012
Comments