cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A067131 Number of elements in the largest set of divisors of n which are in arithmetic progression.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 6, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Amarnath Murthy, Jan 09 2002

Keywords

Examples

			a(12) = 4 as the divisors of 12 are {1,2,3,4,6,12} and the maximal subset in arithmetic progression is {1,2,3,4}. a(15) = 3; the maximal set is {1,3,5}.
		

Crossrefs

Programs

  • Mathematica
    lap[s_] := Module[{}, l=Length[s]; If[l<2, Return[l]]; val=2; For[i=1, ival, val=k]]]; val]; lap/@Divisors/@Range[1, 200]
  • PARI
    A067131(n) = { my(d=divisors(n),m=1); for(i=1,(#d-1), for(j=(i+1),#d,my(c=1,k=d[j],s=(d[j]-d[i])); while(!(n%k), k+=s; c++); m = max(m,c))); (m); }; \\ Antti Karttunen, Sep 21 2018

Formula

a(n) = A061395(A319354(n)). - Antti Karttunen, Sep 21 2018

Extensions

Edited by Dean Hickerson, Jan 15 2002

A319354 a(n) = Product prime(k), where k ranges over the lengths of all arithmetic progressions formed from the divisors of n (with at least two distinct terms each); a(1) = 2 by convention.

Original entry on oeis.org

2, 3, 3, 27, 3, 1215, 3, 729, 27, 729, 3, 93002175, 3, 729, 1215, 59049, 3, 39858075, 3, 14348907, 729, 729, 3, 576626970315375, 27, 729, 729, 23914845, 3, 176518460300625, 3, 14348907, 729, 729, 729, 6305415920398625625, 3, 729, 729, 38127987424935, 3, 63546645708225, 3, 14348907, 66430125, 729, 3, 289588836976147679079375, 27, 14348907, 729
Offset: 1

Views

Author

Antti Karttunen, Sep 21 2018

Keywords

Examples

			For n = 6, the arithmetic progressions found in its divisor set {1, 2, 3, 6} are: {1, 2}, {1, 3}, {2, 3}, {2, 6}, {3, 6} and {1, 2, 3}. Five of these have length 2, and one is of length 3, thus a(6) = prime(2)^5 * prime(3) = 243*5 = 1215.
		

Crossrefs

Cf. A319355 (rgs-transform).

Programs

  • PARI
    A319354(n) = if(1==n,2,my(d=divisors(n),m=1); for(i=1,(#d-1), for(j=(i+1),#d,my(c=1,k=d[j],s=(d[j]-d[i])); while(!(n%k), k+=s; c++); m *= prime(c))); (m));

Formula

For all n >= 1:
A061395(a(n)) = A067131(n).
A071178(a(n)) = A160752(n).
For all n >= 2, A001222(a(n)) = A066446(n).

A319355 Filter sequence constructed from the lengths of arithmetic progressions occurring among the divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 5, 2, 6, 2, 5, 4, 7, 2, 8, 2, 9, 5, 5, 2, 10, 3, 5, 5, 11, 2, 12, 2, 9, 5, 5, 5, 13, 2, 5, 5, 14, 2, 15, 2, 9, 16, 5, 2, 17, 3, 9, 5, 9, 2, 18, 5, 15, 5, 5, 2, 19, 2, 5, 9, 20, 5, 18, 2, 9, 5, 21, 2, 22, 2, 5, 8, 9, 5, 15, 2, 23, 7, 5, 2, 24, 5, 5, 5, 21, 2, 25, 4, 9, 5, 5, 5, 26, 2, 9, 9, 27, 2, 15, 2, 21, 28
Offset: 1

Views

Author

Antti Karttunen, Sep 21 2018

Keywords

Comments

Restricted growth sequence transform of A319354.
For all i, j:
a(i) = a(j) => A067131(i) = A067131(j).
a(i) = a(j) => A160752(i) = A160752(j).
a(i) = a(j) => A091009(i) = A091009(j).

Crossrefs

Cf. A319354.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A319354(n) = if(1==n,2,my(d=divisors(n),m=1); for(i=1,(#d-1), for(j=(i+1),#d,my(c=1,k=d[j],s=(d[j]-d[i])); while(!(n%k), k+=s; c++); m *= prime(c))); (m));
    v319355 = rgs_transform(vector(up_to,n,A319354(n)));
    A319355(n) = v319355[n];
Showing 1-3 of 3 results.