A160753 Binary expansion of the Chaitin halting probability Omega_L for a certain programming language L.
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0
Offset: 0
References
- C. S. Calude, E. Calude and M. J. Dinneen, A new measure of the difficulty of problems, J. Mult.-Valued Logic Soft. Comput., 12 (2006), 285-307.
- C. S. Calude and M. J. Dinneen, Exact approximations of omega numbers, Internat. J. Bifur. Chaos, 17 (6) (2007), 1937-1954.
Links
- C. S. Calude, E. Calude and M. J. Dinneen, A new measure of the difficulty of problems, CDMTCS Research Reports CDMTCS-277 (2006).
- C. S. Calude and G. J. Chaitin, What is ... a Halting Probability?, Notices Amer. Math. Soc., 57 (No. 2, 2010), 236-237.
- C. S. Calude and M. J. Dinneen, Exact approximations of omega numbers, CDMTCS Research Reports CDMTCS-293 (2006).
Crossrefs
Cf. A079365.
Comments