cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A037077 Decimal expansion of upper limit of - 1^(1/1) + 2^(1/2) - 3^(1/3) + ... .

Original entry on oeis.org

1, 8, 7, 8, 5, 9, 6, 4, 2, 4, 6, 2, 0, 6, 7, 1, 2, 0, 2, 4, 8, 5, 1, 7, 9, 3, 4, 0, 5, 4, 2, 7, 3, 2, 3, 0, 0, 5, 5, 9, 0, 3, 0, 9, 4, 9, 0, 0, 1, 3, 8, 7, 8, 6, 1, 7, 2, 0, 0, 4, 6, 8, 4, 0, 8, 9, 4, 7, 7, 2, 3, 1, 5, 6, 4, 6, 6, 0, 2, 1, 3, 7, 0, 3, 2, 9, 6, 6, 5, 4, 4, 3, 3, 1, 0, 7, 4, 9, 6, 9, 0, 3, 8, 4, 2
Offset: 0

Views

Author

Marvin Ray Burns; entry updated Jan 30 2009, Jun 21 2009, Dec 11 2009, Sep 04 2010, Jun 23 2011, Sep 08 2012

Keywords

Comments

From Daniel Forgues, Apr 20 2011: (Start)
The series Sum_{n>=1} (-1)^n n^(1/n) diverges (oscillates) with the upper limit given by this sequence and the lower limit being the upper limit - 1.
The series Sum_{n>=1} (-1)^n (n^(1/n)-1) converges to this upper limit. (End)

Examples

			0.1878596424620671202485179340542732300559030949001387861720046840894772315...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 448-452.

Crossrefs

Programs

  • Maple
    A037077 := proc (e) local a, b, c, d, s, k, n, m; if e < 100 then n := 31+e; Digits := 31+e else n := 131*round((1/100)*e); Digits := 131*round((1/100)*e) end if; a := array(0 .. n-1); a[0] := 1; for m to n-1 do a[m] := ((1/2)*sinh(2*ln(m+1)/(m+1))+cosh(ln(m+1)/(m+1))^2-1)/sinh(ln(m+1)/(m+1)) end do; d := (1/2)*(3+2*2^(1/2))^n+(1/2)/(3+2*2^(1/2))^n; b := -1; c := -d; s := 0; for k from 0 to n-1 do c := b-c; b := 2*b*(k^2-n^2)/((2*k+1)*(k+1)); s := s+c*a[k] end do; Digits := e; print(evalf(1/2-s/d)) end proc;
    A037077(1000)  # { where 1000 is the number of digits desired }
  • Mathematica
    (* Program 1 *)
    f[mx_] := Block[{$MaxExtraPrecision = mx + 8, a, b = -1, c = -1 - d, d = (3 + Sqrt[8])^n, n = 131 Ceiling[mx/100], s = 0}, a[0] = 1; d = (d + 1/d)/2; For[m = 1, m < n, a[m] = (1 + m)^(1/(1 + m)); m++]; For[k = 0, k < n, c = b - c; b = b (k + n) (k - n)/((k + 1/2) (k + 1)); s = s + c*a[k]; k++]; N[1/2 - s/d, mx]];
    RealDigits[ f[105], 10][[1]] (* mx is the number of digits desired  - Marvin Ray Burns, Aug 05 2007 *)
    (* Program 2 *)
    digits = 105; NSum[ (-1)^n*((n^(1/n)) - 1), {n, 1, Infinity}, WorkingPrecision -> digits+10, Method -> "AlternatingSigns"] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013 *)
    (* Program 3 *)
    (* Fastest as of Jan 06 2013. For use with large calculations (5,000-3,000,000 digits) *)
    prec = 5000; (* Number of required digits. *)
    ClearSystemCache[];
    T0 = SessionTime[];
    expM[pre_] :=
      Module[{a, d, s, k, bb, c, n, end, iprec, xvals, x, pc, cores = 6,
        tsize = 2^7, chunksize, start = 1, ll, ctab,
        pr = Floor[1.02 pre]}, chunksize = cores*tsize;
       n = Floor[1.32 pr];
       end = Ceiling[n/chunksize];
       Print["Iterations required: ", n];
       Print["end ", end];
       Print[end*chunksize]; d = ChebyshevT[n, 3];
       {b, c, s} = {SetPrecision[-1, 1.1*n], -d, 0};
       iprec = Ceiling[pr/27];
       Do[xvals = Flatten[ParallelTable[Table[ll = start + j*tsize + l;
            x = N[E^(Log[ll]/(ll)), iprec];
            pc = iprec;
            While[pc < pr, pc = Min[3 pc, pr];
             x = SetPrecision[x, pc];
             y = x^ll - ll;
             x = x (1 - 2 y/((ll + 1) y + 2 ll ll));];(*N[Exp[Log[ll]/ll],
            pr]*)x, {l, 0, tsize - 1}], {j, 0, cores - 1},
           Method -> "CoarsestGrained"]];
        ctab = ParallelTable[Table[c = b - c;
           ll = start + l - 2;
           b *= 2 (ll + n) (ll - n)/((ll + 1) (2 ll + 1));
           c, {l, chunksize}], Method -> "CoarsestGrained"];
        s += ctab.(xvals - 1);
        start += chunksize;
        Print["done iter ", k*chunksize, " ", SessionTime[] - T0];, {k, 0,
          end - 1}];
       N[-s/d, pr]];
    t2 = Timing[MRBtest2 = expM[prec];];
    Print[MRBtest2] (* Richard Crandall via Marvin Ray Burns, Feb 19 2013 *)
  • PARI
    sumalt(x=1,(-1)^x*((x^(1/x))-1))

Extensions

Definition corrected by Daniel Forgues, Apr 20 2011
Showing 1-1 of 1 results.