cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Marvin Ray Burns

Marvin Ray Burns's wiki page.

Marvin Ray Burns has authored 27 sequences. Here are the ten most recent ones:

A248660 Simple continued fraction expansion of the constant defined in A037077.

Original entry on oeis.org

0, 5, 3, 10, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 12, 2, 17, 2, 2, 1, 1, 17, 1, 6, 4, 1, 3, 3, 4, 2, 1, 262, 2, 1, 4, 1, 49, 2, 1, 9, 1, 2, 1, 1, 4, 23, 26, 6, 6, 5, 3, 3, 1, 1, 1, 144, 9, 1, 1, 5, 1, 3, 1, 1, 5, 13, 8619, 2, 1, 45, 2, 1, 1, 2, 1, 4, 5, 1, 7, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 6, 3, 1, 1, 2, 2, 7, 3, 136, 1
Offset: 0

Author

Marvin Ray Burns, Jan 11 2015

Keywords

Comments

A037077 is sometimes called the MRB constant.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 450.

Crossrefs

Cf. A037077 (decimal expansion).

Programs

  • Maple
    MRB:= Sum((-1)^k*(k^(1/k)-1),k=1..infinity):
    V:= evalf[150](MRB):
    subs(`...`=NULL, numtheory:-cfrac(V, 100, 'quotients')); # Robert Israel, Jan 12 2015
  • Mathematica
    m = NSum[(-1)^n*(n^(1/n) - 1), {n, 1, Infinity},
       WorkingPrecision -> 100, Method -> "AlternatingSigns"];
    ContinuedFraction[m]
  • PARI
    contfrac(sumalt(x=1, (-1)^x*((x^(1/x))-1)) ) \\ Michel Marcus, Jan 12 2015

A231336 Integers n such that appending some decimal digit to the first n digits of Pi results in a prime.

Original entry on oeis.org

0, 1, 2, 5, 11, 12, 18, 37, 39, 77, 82, 100, 125, 128, 220, 305, 601, 676, 1692, 1901, 2202, 2253, 2394, 3318, 3970, 5826, 7001, 9853, 12607, 13434, 16207
Offset: 1

Author

Keywords

Comments

A140515 is a proper subsequence. A060421 - 1 is a proper subsequence. So the terms 47576 & 78072 are also members.

Examples

			0 is in the sequence since 2, 3, 5, and 7 are all primes;
1 is in the sequence since 31 and 37 are both primes;
2 is in the sequence since 311, 313, and 317 are all primes;
3 is not in the sequence since 3141, 3143, 3147, and 3149 are all composites;
4 is not in the sequence since 31411, 31413, 31417, and 31419 are all composites;
5 is in the sequence since 314159 is a prime; etc.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Union[PrimeQ[ 10 IntegerPart[10^n*Pi] + {1, 3, 7, 9}]][[-1]]; k = -1; lst = {}; While[k < 17001, If[ fQ@ k, AppendTo[lst, k + 1]; Print[k + 1]]; k++]; lst
    Module[{nn=16300,pd},pd=RealDigits[Pi,10,nn][[1]];Select[Range[0,nn],AnyTrue[ 10*FromDigits[Take[pd,#]]+{1,3,7,9},PrimeQ]&]] (* Harvey P. Dale, Aug 14 2022 *)
  • PARI
    is(n)=my(d=Pi*10^n\10*10);isprime(d+1) || isprime(d+3) || isprime(d+7) || isprime(d+9) \\ Charles R Greathouse IV, Nov 07 2013

Extensions

Keyword "base" added by Zak Seidov, Nov 11 2013

A214128 a(n) = 6^(6^6) mod n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 0, 6, 5, 0, 1, 8, 6, 0, 1, 0, 1, 16, 15, 16, 2, 0, 6, 14, 0, 8, 23, 6, 1, 0, 27, 18, 1, 0, 1, 20, 27, 16, 18, 36, 1, 16, 36, 2, 37, 0, 43, 6, 18, 40, 44, 0, 16, 8, 39, 52, 5, 36, 9, 32, 36, 0, 1, 60, 14, 52, 48, 36, 6, 0, 1, 38, 6, 20, 71
Offset: 1

Author

Marvin Ray Burns, Jul 04 2012

Keywords

Comments

The indices of zeros in this sequence, i.e., divisors of 6^(6^6), are all numbers of the form 2^i * 3^j, with 0 <= i, j <= 6^6. [Edited by M. F. Hasler, Feb 25 2018]
If c and N are any positive integers, and p^k is the largest prime power divisor of c, then the divisors of c^N less than p^(k*N+1) are precisely those numbers in that range whose prime factorization includes only primes that divide c. This is the case c = 6, N = 6^6, so p^k = 2^1 = 2; so the first difference in the divisor list from A003586 is for A003586(n) = 2^(6^6+1). Franklin T. Adams-Watters, Jul 12 2012
Eventually constant: see formula. - M. F. Hasler, Feb 24 2018
If n > 1 is coprime to 6 and A000010(n) divides 6^6 then a(n)=1. - Robert Israel, Nov 27 2019

Examples

			a(1) = 6^(6^6) mod 1 = 0.
a(2) = 6^(6^6) mod 2 = 0.
a(3) = 6^(6^6) mod 3 = 0.
a(4) = 6^(6^6) mod 4 = 0.
		

Crossrefs

Cf. A129810 (9^9^9 mod n), A003586.

Programs

  • Maple
    seq(6 &^ (6^6) mod n, n=1..100); # Robert Israel, Nov 27 2019
  • Mathematica
    Table[PowerMod[6, 6^6, n], {n, 100}]
  • PARI
    a(n)=lift(Mod(6,n)^6^6) \\ Charles R Greathouse IV, Jul 05 2012

Formula

a(n) = 0 if and only if n = 2^i 3^j, 0 <= i, j <= 6^6; after the last of these zeros at n = 6^6^6, a(n) = 6^6^6 for all n > 6^6^6 ~ 2.659*10^36305. - M. F. Hasler, Feb 24 2018

A177218 Decimal expansion of the integral over cos(Pi*x)*x^(1/x) between 1/e and e.

Original entry on oeis.org

1, 8, 7, 7, 7, 9, 0, 3, 1, 3, 2, 3, 0, 4, 2, 7, 7, 0, 4, 3, 3, 0, 1, 0, 5, 2, 9, 1, 2, 4, 3, 8, 7, 9, 7, 0, 8, 8, 2, 6, 6, 3, 6, 7, 7, 5, 5, 7, 9, 0, 0, 5, 4, 0, 2, 3, 5, 7, 1, 2, 0, 9, 0, 4, 4, 4, 6, 3, 1, 1, 2, 6, 1, 5, 5, 0, 2, 5, 9, 2, 6, 5, 2, 3, 9, 5, 4, 7, 9, 2, 3, 7, 2, 8, 6, 6, 0, 1, 3, 0, 5, 1, 6, 2, 1
Offset: 0

Author

Marvin Ray Burns, May 04 2010

Keywords

Comments

Strangely close to A037077 which is a sum of the integrand from 1 to infinity.

Examples

			0.187779...
		

Crossrefs

A157852 is the same integral from 1 to infinity.

Programs

  • Maple
    Int( cos(Pi*x)*x^(1/x),x=exp(-1)..exp(1)) ; evalf(%) ; # R. J. Mathar, May 07 2010
  • Mathematica
    RealDigits[ Re[NIntegrate[(-1)^n*n^(1/n), {n, 1/E, E}, WorkingPrecision -> 200]]]

Extensions

Definition simplified, keyword:cons inserted, offset corrected by R. J. Mathar, May 07 2010

A173273 Decimal expansion of 1 - 2*A037077.

Original entry on oeis.org

6, 2, 4, 2, 8, 0, 7, 1, 5, 0, 7, 5, 8, 6, 5, 7, 5, 9, 5, 0, 2, 9, 6, 4, 1, 3, 1, 8, 9, 1, 4, 5, 3, 5, 3, 9, 8, 8, 8, 1, 9, 3, 8, 1, 0, 1, 9, 9, 7, 2, 2, 4, 2, 7, 6, 5, 5, 9, 9, 0, 6, 3, 1, 8, 2, 1, 0, 4, 5, 5, 3, 6, 8, 7, 0, 6, 7, 9, 5, 7, 2, 5, 9, 3, 4, 0, 6, 6, 9, 1, 1, 3, 3, 7, 8, 5, 0, 0, 6, 1, 9, 2, 3, 1, 5
Offset: 0

Author

Marvin Ray Burns, Feb 14 2010, Feb 24 2010, Mar 05 2010

Keywords

Examples

			0.624280715...
		

Crossrefs

Cf. A037077.

Programs

  • Mathematica
    digits = 105; 1-2*NSum[ (-1)^n*((n^(1/n)) - 1), {n, 1, Infinity}, WorkingPrecision -> digits+10, Method -> "AlternatingSigns"] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013 *)

A157852 Decimal expansion of the absolute value of lim_{N -> infinity} Integral_{x=1..2*N} e^(i*Pi*x)*x^(1/x).

Original entry on oeis.org

6, 8, 7, 6, 5, 2, 3, 6, 8, 9, 2, 7, 6, 9, 4, 3, 6, 9, 8, 0, 9, 3, 1, 2, 4, 0, 9, 3, 6, 5, 4, 4, 0, 1, 6, 4, 9, 3, 9, 6, 3, 7, 3, 8, 4, 9, 0, 3, 6, 2, 2, 5, 4, 1, 7, 9, 5, 0, 7, 1, 0, 1, 0, 1, 0, 7, 4, 3, 3, 6, 6, 2, 5, 3, 4, 7, 8, 4, 9, 3, 7, 0, 6, 8, 6, 2, 7, 2, 9, 8, 2, 4, 0, 4, 9, 8, 4, 6, 8, 1, 8, 8, 7, 3, 1, 9, 2, 9, 3, 3, 4, 3, 3, 5, 4, 6, 6, 1, 2, 3, 2, 8, 6
Offset: 0

Author

Marvin Ray Burns, Mar 07 2009

Keywords

Comments

This constant is the integral analog of the constant described in A037077 since e^(i*Pi*x) =(-1)^x. While A037077 was named the MRB constant by Simon Plouffe, Marvin Ray Burns named this constant MKB after his wife at the time.
This constant is hard to integrate and very slow to converge, so it takes a combination of modern methods to calculate many digits!
This constant could be written as a special value, for omega=Pi, of the function f(omega) = lim_{N->infinity} Integral_{x = Pi/omega .. 2N8(Pi/omega)} (exp(i*omega*x)*x^(1/x)), a kind of discretely sampled Fourier transform of x^(1/x). This stresses the fact that it is a complex entity. People who desire to underline the similarity of this integral to the MRB alternating series (A037077) often write the factor exp(i*Pi*x) as (-1)^x, which can be a bit confusing because it hides the imaginary unit. - Stanislav Sykora, Apr 08 2016

Examples

			After integrating from 1 to 15 million the absolute value of the integral is approximately 0.687652_7, after integrating from 1 to 20 million approximately 0.687652_6.
		

Crossrefs

Integrating A037077 instead of summing.
Cf. A037077, A255727 (real part), A255728 (imaginary part).

Programs

  • Maple
    # After Marvin Ray Burns's "Program 3".
    f := (n, x) -> seq(x, 0..n):
    m := n -> (Pi/I)^n * MeijerG([[], [f(n, 1)]], [[1-n, f(n, 0)], []], -I*Pi):
    s := n -> abs(add(m(k), k = 1..n) - 2)/Pi:
    # s(n) approximates the constant for n -> oo and suitable chosen precision.
    seq(evalf(s(n), 22), n = 1..3); # Peter Luschny, Nov 16 2021
  • Mathematica
    a = NIntegrate[ x^(1/x)*Cos[Pi*x], {x, 1, 10^20}, WorkingPrecision -> 30, MaxRecursion -> 70]; b = NIntegrate[ x^(1/x)*Sin[Pi*x], {x, 1, 10^20}, WorkingPrecision -> 30, MaxRecursion -> 70]; RealDigits[ Sqrt[a^2 + b^2], 10, 18] // First (* Jean-François Alcover, Feb 14 2013 *)
    (* Program 2: to compute and verify 1000s of digits through a different formula. *)
    g[x_] = x^(1/x); t = (Timing[
        MKB = -(I NIntegrate[(g[(1 + t I)]) ( Exp[-Pi t]), {t, 0,
               Infinity}, WorkingPrecision -> 2410,
              Method -> "Trapezoidal", MaxRecursion -> 10] + I/Pi)])[[
      1]]; Print["Timing for calculation=", t]; t = (Timing[
        MKB1 = (1/Pi  NIntegrate[
             g'[1 + I t] Exp[-Pi t], {t, 0, Infinity},
             WorkingPrecision -> 2410, Method -> "Trapezoidal",
             MaxRecursion -> 10] - 2 I/Pi)])[[
      1]]; Print["Timing for verification=", t]; err =
    test - test2; Print["Error=", N[err, 20]];Abs[MKB] (* MaxRecursion -> 13 works for 10,000 digits. Marvin Ray Burns, Apr 18 2021 *)
    (* Program 3: An infinite sum involving the Meijer G function. Compare the discussion near the end of "How I calculated the digits of the MKB constant" and all of Cloud Notebook "How_I_found_A157852_sum" in the link section. *)
    f[n_] := MeijerG[{{},Table[1, {n+1}]}, {Prepend[Table[0, n+1], -n + 1], {}}, -I Pi];
    Abs[Sum[(I/Pi)^(1 - n) N[f[n], 22], {n, 1, 15}] - 2 I/Pi] (* Marvin Ray Burns, Nov 15 2021 *)

Formula

Equals sqrt(A255727^2 + A255728^2). - Joerg Arndt, Apr 05 2016

Extensions

Edited by N. J. A. Sloane, Mar 13 2009
Corrected and edited by Marvin Ray Burns, Apr 03 2009
8 more digits from R. J. Mathar, Nov 30 2009, 3 more Jan 03 2011, 3 more on Feb 25 2013
15 more digits added by Marvin Ray Burns, Feb 26 2013
Many more digits added by Marvin Ray Burns, May 11 2015
Edited by Marvin Ray Burns, Aug 06 2015
Edited by Marvin Ray Burns, Jun 18 2017

A160755 Number of correct digits of the MRB constant derived from the sequence of partial sums up to m=10^n terms as defined by S[n]= Sum[(-1)^k*(k^(1/k)-1),{k,m}].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
Offset: 1

Author

Marvin Ray Burns, May 25 2009

Keywords

Comments

Adding the series -1+sqrt(2)-3^(1/3)+4^(1/4)..., according to this sequence, 10 billion terms must be added to arrive at 11 accurate digits of the MRB constant.

Examples

			For n=1, a(n)=1 because after 10^1 partial sums of -1+sqrt(2)-3^(1/3)+4^(1/4)... you get one accurate digit of the MRB constant.
For n=2, a(n)=2 because after 10^2 partial sums you get two accurate digits and so on.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 450. ISBN 0521818052.

Crossrefs

Cf. A037077 (the MRB constant).

Programs

  • Mathematica
    m = NSum[(-1)^n*(n^(1/n) - 1), {n, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> 1000]; Table[-Floor[Log[10, Abs[m - NSum[(-1)^n*(n^(1/n) - 1), {n, 10^a}, Method ->"AlternatingSigns", WorkingPrecision -> 1000]]]], {a,1, 50}]

Extensions

Corrections from Marvin Ray Burns, Jun 05 2009
Link to Wikipedia replaced by up-to-date version; keyword:less added R. J. Mathar, Aug 04 2010
Corrections by Marvin Ray Burns, Aug 21 2010, Jul 15 2012

A140515 Numbers n such that one of floor(10^n * Pi) or ceiling(10^n * Pi) is prime.

Original entry on oeis.org

0, 1, 5, 11, 18, 37, 601, 1901, 2394, 3970, 5826, 16207
Offset: 1

Author

Marvin Ray Burns, Jul 01 2008, Jul 02 2008

Keywords

Examples

			ceiling(10^11*Pi) = ceiling(314159265358.9...) = 314159265359 is prime, so 11 is in the sequence.
		

Programs

  • Mathematica
    npQ[n_]:=Module[{c=10^n Pi},Total[Boole[PrimeQ[{Floor[ c],Ceiling[ c]}]]] == 1]; Select[Range[0,4000],npQ] (* The program generates the first 10 terms of the sequence. To generate more, increase the Range constant, but the program may take a long time to run. *) (* Harvey P. Dale, May 07 2021 *)
  • PARI
    isA140515(n)=isprime(bitor(floor(10^n*Pi),1))

A135373 a(n) = prime(2^(n + 1)) - prime(2^n).

Original entry on oeis.org

1, 4, 12, 34, 78, 180, 408, 900, 2052, 4490, 9702, 21010, 45144, 96486, 205590, 435548, 920896, 1938594, 4072946, 8535970, 17845982, 37242540, 77569570, 161300102, 334906956, 694329000, 1437620932, 2972973918, 6141189354, 12672042908, 26122458858, 53799031890
Offset: 0

Author

Marvin Ray Burns, Dec 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Prime[2^(n + 1)] - Prime[2^n], {n, 0, 40}]
    #[[2]]-#[[1]]&/@Partition[Prime[2^Range[0,30]],2,1] (* Harvey P. Dale, Feb 21 2015 *)
  • PARI
    a(n) = prime(2^(n + 1)) - prime(2^n); \\ Michel Marcus, Nov 15 2020

Formula

a(n) = A033844(n+1) - A033844(n). - Jinyuan Wang, Nov 14 2020

Extensions

a(29)-a(31) from Jinyuan Wang, Nov 14 2020

A135371 a(n) = prime(3^(n + 1)) - prime(3^n).

Original entry on oeis.org

3, 18, 80, 316, 1124, 3976, 13770, 46398, 155174, 512700, 1679218, 5454768, 17617664, 56578816, 180896064, 576041630, 1827788446, 5781493590, 18236550884, 57379347420, 180130119286, 564319058202, 1764618506934, 5508483994106, 17168384214168, 53431296170784
Offset: 0

Author

Marvin Ray Burns, Dec 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Prime[3^(n + 1)] - Prime[3^n], {n, 0, 26}]
  • PARI
    a(n) = prime(3^(n + 1)) - prime(3^n); \\ Michel Marcus, Nov 15 2020

Formula

a(n) = A038833(n+1) - A038833(n). - Jinyuan Wang, Nov 14 2020

Extensions

a(23)-a(25) from Jinyuan Wang, Nov 14 2020