cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A231336 Integers n such that appending some decimal digit to the first n digits of Pi results in a prime.

Original entry on oeis.org

0, 1, 2, 5, 11, 12, 18, 37, 39, 77, 82, 100, 125, 128, 220, 305, 601, 676, 1692, 1901, 2202, 2253, 2394, 3318, 3970, 5826, 7001, 9853, 12607, 13434, 16207
Offset: 1

Views

Author

Keywords

Comments

A140515 is a proper subsequence. A060421 - 1 is a proper subsequence. So the terms 47576 & 78072 are also members.

Examples

			0 is in the sequence since 2, 3, 5, and 7 are all primes;
1 is in the sequence since 31 and 37 are both primes;
2 is in the sequence since 311, 313, and 317 are all primes;
3 is not in the sequence since 3141, 3143, 3147, and 3149 are all composites;
4 is not in the sequence since 31411, 31413, 31417, and 31419 are all composites;
5 is in the sequence since 314159 is a prime; etc.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Union[PrimeQ[ 10 IntegerPart[10^n*Pi] + {1, 3, 7, 9}]][[-1]]; k = -1; lst = {}; While[k < 17001, If[ fQ@ k, AppendTo[lst, k + 1]; Print[k + 1]]; k++]; lst
    Module[{nn=16300,pd},pd=RealDigits[Pi,10,nn][[1]];Select[Range[0,nn],AnyTrue[ 10*FromDigits[Take[pd,#]]+{1,3,7,9},PrimeQ]&]] (* Harvey P. Dale, Aug 14 2022 *)
  • PARI
    is(n)=my(d=Pi*10^n\10*10);isprime(d+1) || isprime(d+3) || isprime(d+7) || isprime(d+9) \\ Charles R Greathouse IV, Nov 07 2013

Extensions

Keyword "base" added by Zak Seidov, Nov 11 2013
Showing 1-1 of 1 results.