A160796 Total number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton which is the "corner" structure corresponding to A160118.
0, 1, 8, 11, 32, 35, 56, 65, 128, 131, 152, 161, 224, 233, 296, 323, 512, 515, 536, 545, 608, 617, 680, 707, 896, 905, 968, 995, 1184, 1211, 1400, 1481, 2048, 2051, 2072, 2081, 2144, 2153, 2216, 2243, 2432, 2441, 2504, 2531, 2720, 2747, 2936, 3017, 3584, 3593, 3656
Offset: 0
Keywords
Examples
If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below: ..9...............9 ...888.888.888.888. ...878.878.878.878. ...8866688.8866688. .....656.....656... ...8866444.4446688. ...878.434.434.878. ...888.4422244.888. .........212....... 00000000002244.888. 0000000000.434.878. 0000000000.4446688. 0000000000...656... 0000000000.8866688. 0000000000.878.878. 0000000000.888.888. 0000000000........9 0000000000......... 0000000000.........
Programs
-
Mathematica
With[{d = 2}, wt[n_] := DigitCount[n, 2, 1]; a[n_] := (5 + 3 * If[OddQ[n], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 1)/2}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 3)/2}], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}]]) / 4; a[0] = 0; a[1] = 1; Array[a, 50, 0]] (* Amiram Eldar, Aug 01 2023 *)
Formula
a(n) = 2 + (3/4)*(A160118(n) - 1) if n >= 2.
Extensions
Entry revised by Omar E. Pol and N. J. A. Sloane, Feb 16 2010
More terms from Nathaniel Johnston, Nov 13 2010
Corrected by Sean A. Irvine, Mar 23 2011, in response to correction to A160118
More terms from Amiram Eldar, Aug 01 2023
Comments