cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A346147 Primes p such that p*p' mod (p+p') and floor(p*p'/(p+p')) are prime, where p' is the next prime after p.

Original entry on oeis.org

5, 11, 13, 113, 139, 157, 179, 193, 313, 359, 479, 509, 691, 773, 919, 953, 1019, 1039, 1093, 1453, 1571, 1873, 2297, 2341, 2357, 2459, 2633, 3089, 3229, 3253, 3571, 4021, 4219, 4483, 4523, 4663, 4889, 4933, 4943, 5113, 5153, 5179, 5233, 5261, 5323, 5449, 5591, 5639, 6037, 6073, 6079, 6337, 6373
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jul 06 2021

Keywords

Comments

Primes prime(k) such that A212769(k) and A160830(k) are both prime.

Examples

			a(3) = 13 is a term because 13 and 17 are consecutive primes with (13*17) mod (13+17) = 11 and floor(13*17/(13+17)) = 7 are prime.
		

Crossrefs

Programs

  • Maple
    P:= select(isprime, [2,seq(i,i=3..10^5,2)]):
    f:= proc(n) local s,t;
       s:= P[n]+P[n+1];
       t:= P[n]*P[n+1];
       if isprime(t mod s) and isprime(floor(t/s)) then return P[n] fi
    end proc:
    map(f, [$1..nops(P)-1]);
  • Mathematica
    Select[Partition[Select[Range[6400], PrimeQ], 2, 1], PrimeQ[Mod[(p = First[#] * Last[#]), (s = First[#] + Last[#])]] && PrimeQ[Quotient[p, s]] &][[;; , 1]] (* Amiram Eldar, Jul 06 2021 *)
  • PARI
    list(lim)=my(v=List(),p=2,pq); forprime(q=3,nextprime(lim\1+1/2), pq=p*q; if(isprime(pq%(p+q)) && isprime(pq\(p+q)), listput(v,p)); p=q); Vec(v) \\ Charles R Greathouse IV, Jul 06 2021
    
  • Python
    from sympy import nextprime, isprime
    p, q, A346147_list = 2,3,[]
    while len(A346147_list) < 1000:
        if isprime(p*q % (p+q)) and isprime(p*q//(p+q)):
            A346147_list.append(p)
        p, q = q,nextprime(q) # Chai Wah Wu, Jul 06 2021

A376334 Integer part of the product of three consecutive primes divided by their sum.

Original entry on oeis.org

3, 7, 16, 32, 59, 85, 125, 178, 249, 342, 431, 539, 632, 749, 924, 1102, 1289, 1458, 1645, 1836, 2036, 2324, 2663, 3038, 3352, 3579, 3765, 4005, 4482, 5067, 5770, 6129, 6676, 7123, 7729, 8204, 8775, 9362, 9964, 10515, 11230, 11809, 12499, 12845, 13627, 14792
Offset: 1

Views

Author

Harvey P. Dale, Sep 20 2024

Keywords

Examples

			a(5) = Floor[(prime(5)*prime(6)*prime(7))/(prime(5)+prime(6)+prime(7))]==59.
		

Crossrefs

Cf. A160830.

Programs

  • Mathematica
    Floor[Times@@#/Total[#]&/@Partition[Prime[Range[100]],3,1]]
Showing 1-2 of 2 results.