cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160846 Number of lines through at least 2 points of a 6 X n grid of points.

Original entry on oeis.org

0, 1, 38, 75, 136, 207, 306, 405, 534, 673, 836, 1003, 1200, 1401, 1632, 1869, 2128, 2397, 2696, 2995, 3324, 3661, 4022, 4389, 4786, 5187, 5616, 6051, 6510, 6979, 7478, 7975, 8502, 9039, 9600, 10167, 10762, 11361, 11990, 12625, 13284, 13951, 14648
Offset: 0

Views

Author

Seppo Mustonen, May 28 2009

Keywords

Programs

  • Mathematica
    m=6;
    a[0]=0; a[1]=1;
    a[2]=m^2+2;
    a[3]=2*m^2+3-Mod[m,2];
    a[n_]:=a[n]=2*a[n-1]-a[n-2]+2*p1[m,n]+2*p4[m,n]
    p1[m_,n_]:=Sum[p2[m,n,y], {y,1,m-1}]
    p2[m_,n_,y_]:=If[GCD[y,n-1]==1,m-y,0]
    p[i_]:=If[i>0,i,0]
    p2[m_,n_,x_,y_]:=p2[m,n,x,y]=(n-x)*(m-y)-p[n-2*x]*p[m-2*y]
    p3[m_,n_,x_,y_]:=p2[m,n,x,y]-2*p2[m,n-1,x,y]+p2[m,n-2,x,y]
    p4[m_,n_]:=p4[m,n]=If[Mod[n,2]==0,0,p42[m,n]]
    p42[m_,n_]:=p42[m,n]=Sum[p43[m,n,y], {y,1,m-1}]
    p43[m_,n_,y_]:=If[GCD[(n-1)/2,y]==1,p3[m,n,(n-1)/2,y],0]
    Table[a[n],{n,0,42}]

Formula

a(n) = (1/2)*(f(m,n,1)-f(m,n,2)) where f(m,n,k) = Sum((n-|kx|)*(m-|ky|)); -n < kx < n, -m < ky < m, (x,y)=1, m=6.
For another more efficient formula, see Mathematica code below.
Empirical g.f.: -x*(6*x^12 + 6*x^11 + 7*x^10 + 32*x^9 + 63*x^8 + 117*x^7 + 156*x^6 + 192*x^5 + 168*x^4 + 135*x^3 + 75*x^2 + 38*x + 1) / ((x - 1)^3*(x + 1)*(x^2 + 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)). - Colin Barker, May 24 2015