A160846 Number of lines through at least 2 points of a 6 X n grid of points.
0, 1, 38, 75, 136, 207, 306, 405, 534, 673, 836, 1003, 1200, 1401, 1632, 1869, 2128, 2397, 2696, 2995, 3324, 3661, 4022, 4389, 4786, 5187, 5616, 6051, 6510, 6979, 7478, 7975, 8502, 9039, 9600, 10167, 10762, 11361, 11990, 12625, 13284, 13951, 14648
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- S. Mustonen, On lines and their intersection points in a rectangular grid of points
Programs
-
Mathematica
m=6; a[0]=0; a[1]=1; a[2]=m^2+2; a[3]=2*m^2+3-Mod[m,2]; a[n_]:=a[n]=2*a[n-1]-a[n-2]+2*p1[m,n]+2*p4[m,n] p1[m_,n_]:=Sum[p2[m,n,y], {y,1,m-1}] p2[m_,n_,y_]:=If[GCD[y,n-1]==1,m-y,0] p[i_]:=If[i>0,i,0] p2[m_,n_,x_,y_]:=p2[m,n,x,y]=(n-x)*(m-y)-p[n-2*x]*p[m-2*y] p3[m_,n_,x_,y_]:=p2[m,n,x,y]-2*p2[m,n-1,x,y]+p2[m,n-2,x,y] p4[m_,n_]:=p4[m,n]=If[Mod[n,2]==0,0,p42[m,n]] p42[m_,n_]:=p42[m,n]=Sum[p43[m,n,y], {y,1,m-1}] p43[m_,n_,y_]:=If[GCD[(n-1)/2,y]==1,p3[m,n,(n-1)/2,y],0] Table[a[n],{n,0,42}]
Formula
a(n) = (1/2)*(f(m,n,1)-f(m,n,2)) where f(m,n,k) = Sum((n-|kx|)*(m-|ky|)); -n < kx < n, -m < ky < m, (x,y)=1, m=6.
For another more efficient formula, see Mathematica code below.
Empirical g.f.: -x*(6*x^12 + 6*x^11 + 7*x^10 + 32*x^9 + 63*x^8 + 117*x^7 + 156*x^6 + 192*x^5 + 168*x^4 + 135*x^3 + 75*x^2 + 38*x + 1) / ((x - 1)^3*(x + 1)*(x^2 + 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)). - Colin Barker, May 24 2015