A295707
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of lines through at least 2 points of an n X k grid of points.
Original entry on oeis.org
0, 1, 1, 1, 6, 1, 1, 11, 11, 1, 1, 18, 20, 18, 1, 1, 27, 35, 35, 27, 1, 1, 38, 52, 62, 52, 38, 1, 1, 51, 75, 93, 93, 75, 51, 1, 1, 66, 100, 136, 140, 136, 100, 66, 1, 1, 83, 131, 181, 207, 207, 181, 131, 83, 1, 1, 102, 164, 238, 274, 306, 274, 238, 164, 102, 1
Offset: 1
Square array begins:
0, 1, 1, 1, 1, ...
1, 6, 11, 18, 27, ...
1, 11, 20, 35, 52, ...
1, 18, 35, 62, 93, ...
1, 27, 52, 93, 140, ...
1, 38, 75, 136, 207, ...
Main diagonal gives
A018808. Reading up to the diagonal gives
A107348.
-
A[n_, k_] := (1/2)(f[n, k, 1] - f[n, k, 2]);
f[n_, k_, m_] := Sum[If[GCD[mx/m, my/m] == 1, (n - Abs[mx])(k - Abs[my]), 0], {mx, -n, n}, {my, -k, k}];
Table[A[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 04 2023 *)
A107348
Triangle read by rows: T(m,n) = number of different lines in a rectangular m X n array of points with integer coordinates (x,y): 0 <= x <= m, 0 <= y <= n.
Original entry on oeis.org
0, 1, 6, 1, 11, 20, 1, 18, 35, 62, 1, 27, 52, 93, 140, 1, 38, 75, 136, 207, 306, 1, 51, 100, 181, 274, 405, 536, 1, 66, 131, 238, 361, 534, 709, 938, 1, 83, 164, 299, 454, 673, 894, 1183, 1492, 1, 102, 203, 370, 563, 836, 1111, 1470, 1855, 2306
Offset: 0
Triangle begins
0,
1, 6,
1, 11, 20,
1, 18, 35, 62,
1, 27, 52, 93, 140,
1, 38, 75, 136, 207, 306,
1, 51, 100, 181, 274, 405, 536,
1, 66, 131, 238, 361, 534, 709, 938,
1, 83, 164, 299, 454, 673, 894, 1183, 1492,
1, 102, 203, 370, 563, 836, 1111, 1470, 1855, 2306,
...
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh, On the minimal teaching sets of two-dimensional threshold functions, SIAM J. Disc. Math. 29(1), 2015, pp. 157-165.
- Les Reid, Problem #7: How Many Lines Does the Lattice of Points Generate?, Problems from the 04-05 academic year, Challenge Archive, Missouri State University's Problem Corner.
-
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
LL:=(m,n)->(VR(m,n,1)-VR(m,n,2))/2;
for m from 1 to 12 do lprint([seq(LL(m,n),n=1..m)]); od: # N. J. A. Sloane, Feb 10 2020
-
VR[m_, n_, q_] := Sum[If[GCD[i, j] == q, (m - Abs[i])(n - Abs[j]), 0], {i, -m + 1, m - 1}, {j, -n + 1, n - 1}];
LL[m_, n_] := (1/2)(VR[m, n, 1] - VR[m, n, 2]);
Table[LL[m, n], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 04 2023, after N. J. A. Sloane *)
T(3,3) corrected and sequence extended by
R. J. Mathar, Dec 17 2017
Showing 1-2 of 2 results.
Comments