A384433 Integers k that are equal to the sum of at least two distinct of their anagrams, which must have the same number of digits as k.
954, 2961, 4617, 4851, 4932, 5013, 5022, 5031, 5103, 5112, 5184, 5238, 5823, 5913, 6012, 6021, 6102, 6129, 6147, 6171, 6180, 6192, 6210, 6219, 6291, 6312, 6321, 6417, 6519, 6915, 6921, 7125, 7128, 7149, 7152, 7182, 7194, 7218, 7251, 7281, 7341, 7416, 7431
Offset: 1
Examples
4617 is in this list, since 4617 = 1467 + 1476 + 1674, where 1467, 1476 and 1674 are anagrams of 4617. 921 is not in the sequence even though 921 = 192 + 219 + 219 + 291. - _David A. Corneth_, Jun 05 2025
Links
- David A. Corneth, Table of n, a(n) for n = 1..10956 (first 500 terms from Gonzalo Martínez)
Programs
-
Python
from itertools import permutations from functools import lru_cache @lru_cache(maxsize=None) def anagrams(k): s = str(k) return sorted({int(''.join(p)) for p in permutations(s) if p[0] != '0' and int(''.join(p)) != k}) def ok(k): def back(i, acc): if acc == k: return True if acc > k or i == len(a): return False return back(i + 1, acc + a[i]) or back(i + 1, acc) a = anagrams(k) return back(0, 0) print([k for k in range(10, 10000) if ok(k)])
Comments