cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160873 Number of isomorphism classes of connected (D_4)-fold coverings of a connected graph with circuit rank n.

Original entry on oeis.org

0, 3, 42, 420, 3720, 31248, 256032, 2072640, 16679040, 133824768, 1072169472, 8583644160, 68694312960, 549655154688, 4397643866112, 35182761492480, 281468534292480, 2251774043947008, 18014295430397952, 144114775759257600
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2009

Keywords

Comments

Previous name: "Regular coverings having dihedral voltage groups: see Kwak-Lee reference in A160870 for precise definition."
From Álvar Ibeas, Oct 30 2015: (Start)
Also, number of isomorphism classes of connected (C_4 x C_2)-fold coverings of a connected graph with circuit rank n.
Also, number of lattices L in Z^n such that the quotient group Z^n / L is C_4 x C_2.
Also, number of subgroups of (C_4)^n isomorphic to C_4 x C_2.
(End)

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

Programs

  • Magma
    [2^(-3+n)*(2-3*2^n+4^n): n in [1..30]]; // G. C. Greubel, Apr 30 2018
  • Mathematica
    Table[2^(-3+n)*(2-3*2^n+4^n), {n,1,30}] (* or *) LinearRecurrence[{14, -56, 64}, {0, 3, 42}, 30] (* G. C. Greubel, Apr 30 2018 *)
  • PARI
    a(n) = 2^(-3+n) * (2-3*2^n+4^n) \\ Colin Barker, Oct 30 2015
    
  • PARI
    concat(0, Vec(-3*x^2/((2*x-1)*(4*x-1)*(8*x-1)) + O(x^30))) \\ Colin Barker, Oct 30 2015
    

Formula

a(n) = 2^(n-2) * (2^n - 1) * (2^(n-1) - 1) = 8^(n-1) - 6*4^(n-2) + 2^(n-2) [Kwak, Chun, and Lee]. - Álvar Ibeas, Oct 30 2015
From Colin Barker, Oct 30 2015: (Start)
a(n) = 2^(-3+n) * (2-3*2^n+4^n).
a(n) = 14*a(n-1)-56*a(n-2)+64*a(n-3) for n>3.
G.f.: -3*x^2/((2*x-1)*(4*x-1)*(8*x-1)). (End)

Extensions

Name clarified by Álvar Ibeas, Oct 30 2015