A160873 Number of isomorphism classes of connected (D_4)-fold coverings of a connected graph with circuit rank n.
0, 3, 42, 420, 3720, 31248, 256032, 2072640, 16679040, 133824768, 1072169472, 8583644160, 68694312960, 549655154688, 4397643866112, 35182761492480, 281468534292480, 2251774043947008, 18014295430397952, 144114775759257600
Offset: 1
References
- J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.
Links
- Álvar Ibeas, Table of n, a(n) for n = 1..1000
- J. H. Kwak, J.-H. Chun, and J. Lee, Enumeration of regular graph coverings having finite abelian covering transformation groups, SIAM J. Discrete Math. 11(2), 1998, pp. 273-285.
- Index entries for linear recurrences with constant coefficients, signature (14,-56,64).
Programs
-
Magma
[2^(-3+n)*(2-3*2^n+4^n): n in [1..30]]; // G. C. Greubel, Apr 30 2018
-
Mathematica
Table[2^(-3+n)*(2-3*2^n+4^n), {n,1,30}] (* or *) LinearRecurrence[{14, -56, 64}, {0, 3, 42}, 30] (* G. C. Greubel, Apr 30 2018 *)
-
PARI
a(n) = 2^(-3+n) * (2-3*2^n+4^n) \\ Colin Barker, Oct 30 2015
-
PARI
concat(0, Vec(-3*x^2/((2*x-1)*(4*x-1)*(8*x-1)) + O(x^30))) \\ Colin Barker, Oct 30 2015
Formula
a(n) = 2^(n-2) * (2^n - 1) * (2^(n-1) - 1) = 8^(n-1) - 6*4^(n-2) + 2^(n-2) [Kwak, Chun, and Lee]. - Álvar Ibeas, Oct 30 2015
From Colin Barker, Oct 30 2015: (Start)
a(n) = 2^(-3+n) * (2-3*2^n+4^n).
a(n) = 14*a(n-1)-56*a(n-2)+64*a(n-3) for n>3.
G.f.: -3*x^2/((2*x-1)*(4*x-1)*(8*x-1)). (End)
Extensions
Name clarified by Álvar Ibeas, Oct 30 2015
Comments