cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160891 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 5.

Original entry on oeis.org

1, 15, 40, 120, 156, 600, 400, 960, 1080, 2340, 1464, 4800, 2380, 6000, 6240, 7680, 5220, 16200, 7240, 18720, 16000, 21960, 12720, 38400, 19500, 35700, 29160, 48000, 25260, 93600, 30784, 61440, 58560, 78300, 62400, 129600, 52060, 108600, 95200
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^4 such that the quotient group Z^4 / L is C_nm x (C_m)^3 (and also (C_nm)^3 x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015

Examples

			There are 1395 = A160870(8,4) lattices of volume 8 in Z^4. Among them, a(8) = 960 give the quotient group C_8 and a(2) = 15 give C_2 x C_2 x C_2.
Among the lattices of volume 64 in Z^4, there are a(4) = 120 such that the quotient group is C_4 x C_4 x C_4 and other 120 with quotient group C_8 x (C_2)^3.
		

Crossrefs

Column 4 of A263950.

Programs

  • Maple
    A160891 := proc(n) a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; a := a*p^(3*e-3)*(1+p+p^2+p^3) ; end do; a; end proc:
    seq(A160891(n),n=1..20) ; # R. J. Mathar, Jul 10 2011
  • Mathematica
    A160891[n_]:=DivisorSum[n,MoebiusMu[n/#]*#^(5-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 19 2010 *)
    f[p_, e_] := p^(3 e - 3)*(1 + p + p^2 + p^3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(50, n, sumdiv(n^3, d, if(ispower(d, 4), moebius(sqrtnint(d, 4))*sigma(n^3/d), 0))) \\ Altug Alkan, Oct 30 2014
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i,1] = p^(3*f[i,2]-3)*(1+p+p^2+p^3); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_4(n)/J_1(n) = J_4(n)/phi(n) = A059377(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 19 2010
Multiplicative with a(p^e) = p^(3e-3)*(1+p+p^2+p^3). - R. J. Mathar, Jul 10 2011
For squarefree n, a(n) = A000203(n^3). - Álvar Ibeas, Oct 30 2015
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^3/((p^3-1)*(p^3+p^2+p+1))) = 1.115923965261131974852254388404911045036763705978837384729819264463715993... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (1/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.4629765396... . - Amiram Eldar, Nov 08 2022
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^4). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Aug 22 2010